泽尼克多项式
波前
正交性
数学
二次方程
基础(线性代数)
光学
代表(政治)
多项式的
格布纳基
二次函数
应用数学
数学分析
物理
几何学
政治
政治学
法学
作者
Damien Gatinel,Jacques Malet,Laurent Dumas
标识
DOI:10.1364/josaa.35.002035
摘要
Zernike circle polynomials are in widespread use for wavefront analysis because of their orthogonality over a circular pupil and their representation of balanced classical aberrations. However, some of the higher-order modes contain linear and quadratic terms. A new aberration series is proposed to better separate the low- versus higher-order aberration components. Because its higher-order modes are devoid of linear and quadratic terms, our new basis can be used to better fit the low- and higher-order components of the wavefront. This new basis may quantify the aberrations more accurately and provide clinicians with coefficient magnitudes which better underline the impact of clinically significant aberration modes.
科研通智能强力驱动
Strongly Powered by AbleSci AI