作者
Dylan Craven,Nico Eisenhauer,William D. Pearse,Yann Hautier,Forest Isbell,Christiane Roscher,Michael Bahn,Carl Beierkuhnlein,Gerhard Bönisch,Nina Buchmann,Chaeho Byun,Jane A. Catford,Bruno Enrico Leone Cerabolini,J. Hans C. Cornelissen,Joseph M. Craine,Enrica De Luca,Anne Ebeling,John N. Griffin,Andy Hector,Jes Hines,Anke Jentsch,Jens Kattge,Jüergen Kreyling,Vojtěch Lanta,Nathan P. Lemoine,Sebastian T. Meyer,Vanessa Minden,В. Г. Онипченко,H. Wayne Polley,Peter B. Reich,Jasper van Ruijven,Brandon S. Schamp,Melinda D. Smith,Nadejda A. Soudzilovskaia,David Tilman,Alexandra Weigelt,Brian J. Wilsey,Peter Manning
摘要
A substantial body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity–stability relationship remains unclear. Here we use data from 39 grassland biodiversity experiments and structural equation modelling to investigate the roles of species richness, phylogenetic diversity and both the diversity and community-weighted mean of functional traits representing the ‘fast–slow’ leaf economics spectrum in driving the diversity–stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony in the performance of co-occurring species. Contrary to expectations, low phylogenetic diversity enhances ecosystem stability directly, albeit weakly. While the diversity of fast–slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our in-depth, integrative assessment of factors influencing the diversity–stability relationship demonstrates a more multicausal relationship than has been previously acknowledged. Analysing data from 39 grassland biodiversity experiments, the authors uncover the direct and indirect contributions to ecosystem stability of taxonomic, phylogenetic and functional trait diversity.