Distance-dependent quenching and enhancing of electrochemiluminescence from tris(2, 2′-bipyridine) ruthenium (II)/tripropylamine system by gold nanoparticles and its sensing applications

电化学发光 胶体金 猝灭(荧光) 电极 联吡啶 电化学 化学 氧化铟锡 电子转移 无机化学 纳米颗粒 光化学 材料科学 荧光 纳米技术 催化作用 有机化学 物理化学 物理 晶体结构 量子力学
作者
Qi-Qi Gai,Dongmei Wang,Rongfu Huang,Xia-Xia Liang,Honglin Wu,Xingyi Tao
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:118: 80-87 被引量:31
标识
DOI:10.1016/j.bios.2018.07.023
摘要

Understanding the role of gold nanoparticles (AuNPs) in electrochemiluminescence (ECL) processes of the Ru(bpy)32+ (bpy= 2, 2'-bipyridine)/tripropylamine (TPA) system would be beneficial to develop novel ECL sensors for a variety of applications. In this work, we found that the AuNPs on the surface of indium tin oxide (ITO) electrode could catalyze the electrochemical oxidation of TPA, greatly enhancing the ECL signal of Ru(bpy)32+/TPA, present in the solution. If physical separation of AuNPs away from electrode surface after hybridization with target ssDNA, ECL signal decreased dramatically due to the loss of electrochemical activity of AuNPs, based on which a sensitive and specific DNA sensor in a "switch-off" mode was constructed with a detection limit of 0.2 pM. In addition, a suppressing effect of the AuNPs on the ECL of Ru(bpy)32+ was experimentally confirmed by decreasing the electrocatalytic effect to overall ECL emission, including selection of oxalate as a coreactant instead of TPA, or introduction of gold electrode as substrate. Furthermore, when Ru(bpy)32+ and AuNPs were both immobilized on the ITO electrode at close proximity, the ECL quenching induced by energy/electron transfer was predominant. ECL emission of the Ru(bpy)32+/TPA system resulted from a competition between electrocatalytic enhancement and quenching effect. However, the quenched ECL signal would return in case of the AuNPs moving far away from ECL emitters after a hybridization reaction as before, and a separation distance dependent surface enhancement was observed as well. Based on the role change for AuNPs from quenching to enhancing ECL intensity of Ru(bpy)32+/TPA system, a novel ECL DNA sensing strategy in a "turn-on" mode was developed, enabling quantitative analysis of target ssDNA over the range of 0.05 pM to 0.5 nM with a detection limit of 12 fM. Overall, we demonstrated the existence of three effects of AuNPs on the ECL of Ru(bpy)32+/TPA system, and which played the leading role was dependent on the placement of AuNPs, Ru(bpy)32+, and their separation distance. The ECL sensors based on the role change for AuNPs showed both high sensitivity and excellent selectivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Eos采纳,获得10
刚刚
jojo完成签到,获得积分20
1秒前
赘婿应助YH采纳,获得10
1秒前
小黑发布了新的文献求助10
2秒前
纷纭发布了新的文献求助10
4秒前
4秒前
万能图书馆应助生动凝旋采纳,获得10
5秒前
上官若男应助科研小白采纳,获得10
6秒前
子云发布了新的文献求助10
6秒前
balabala完成签到 ,获得积分10
6秒前
科研通AI5应助zhangling采纳,获得10
7秒前
彪壮的绮梅完成签到,获得积分10
7秒前
8秒前
9秒前
桐桐应助Dr.Joseph采纳,获得10
9秒前
桐桐应助Oyster采纳,获得10
9秒前
CodeCraft应助Vincent采纳,获得10
9秒前
10秒前
机灵的幻灵完成签到 ,获得积分10
13秒前
yoowt发布了新的文献求助10
15秒前
YH发布了新的文献求助10
15秒前
yqf完成签到,获得积分10
16秒前
wxyinhefeng完成签到 ,获得积分10
16秒前
1111完成签到 ,获得积分10
16秒前
19秒前
yoowt完成签到,获得积分10
20秒前
21秒前
22秒前
Joshua完成签到 ,获得积分10
22秒前
记忆完成签到,获得积分10
22秒前
搜集达人应助火星上冬日采纳,获得10
23秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
李健应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
25秒前
华仔应助科研通管家采纳,获得10
25秒前
Singularity应助科研通管家采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671735
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9779943
捐赠科研通 2938695
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760602
科研通“疑难数据库(出版商)”最低求助积分说明 736096