Fast Fuzzy Clustering Based on Anchor Graph

计算机科学 聚类分析 树冠聚类算法 约束聚类 数据流聚类 CURE数据聚类算法 模糊聚类 人工智能 数据挖掘 机器学习 相关聚类 算法
作者
Feiping Nie,Chaodie Liu,Rong Wang,Zhen Wang,Xuelong Li
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (7): 2375-2387 被引量:42
标识
DOI:10.1109/tfuzz.2021.3081990
摘要

Fuzzy clustering is one of the most popular clustering approaches and has attracted considerable attention in many fields. However, high computational cost has become a bottleneck which limits its applications in large-scale problems. Moreover, most fuzzy clustering algorithms are sensitive to noise. To address these issues, a novel fuzzy clustering algorithm, called fast fuzzy clustering based on anchor graph (FFCAG), is proposed. The FFCAG algorithm integrates anchor-based similarity graph construction and membership matrix learning into a unified framework, such that the prior knowledge of anchors can be further utilized to improve clustering performance. Specifically, FFCAG first constructs an anchor-based similarity graph with a parameter-free neighbor assignment strategy. Then, it designs a quadratic programming model to learn the membership matrix of anchors, which is very different from traditional fuzzy clustering algorithms. More importantly, a novel balanced regularization term is introduced into the objective function to produce more accurate clustering results. Finally, we adopt an alternating optimization algorithm with guaranteed convergence to solve the proposed method. Experimental results performed on synthetic and real-world datasets demonstrate the proposed FFCAG can significantly reduce the computational time with comparable, even superior, clustering performance, compared with state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小邬要稳重完成签到,获得积分10
1秒前
Jameszhuo发布了新的文献求助10
2秒前
七七完成签到,获得积分10
3秒前
xixilulixiu发布了新的文献求助10
6秒前
6秒前
6秒前
ayumi完成签到,获得积分10
7秒前
任性完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
NL14D发布了新的文献求助200
9秒前
JULY完成签到,获得积分10
9秒前
10秒前
Zbmd完成签到,获得积分10
10秒前
震动的千萍完成签到,获得积分10
10秒前
11秒前
jessica完成签到,获得积分10
11秒前
guozizi完成签到,获得积分10
11秒前
shuiyu完成签到,获得积分10
12秒前
ruqayyah发布了新的文献求助10
12秒前
AdventureChen完成签到 ,获得积分10
13秒前
自然1111完成签到,获得积分10
14秒前
mmddlj完成签到 ,获得积分10
14秒前
16秒前
星辰大海应助接accept采纳,获得10
16秒前
tomorrow9完成签到 ,获得积分10
17秒前
zz完成签到,获得积分10
17秒前
田様应助Wakey采纳,获得10
18秒前
18秒前
可靠觅珍应助马某采纳,获得10
19秒前
19秒前
星辰大海应助Jameszhuo采纳,获得10
21秒前
guozizi发布了新的文献求助10
23秒前
MessOo关注了科研通微信公众号
23秒前
lily完成签到 ,获得积分10
23秒前
qqwrv发布了新的文献求助10
25秒前
25秒前
25秒前
xh完成签到,获得积分10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150