Fast Fuzzy Clustering Based on Anchor Graph

计算机科学 聚类分析 树冠聚类算法 约束聚类 数据流聚类 CURE数据聚类算法 模糊聚类 人工智能 数据挖掘 机器学习 相关聚类 算法
作者
Feiping Nie,Chaodie Liu,Rong Wang,Zhen Wang,Xuelong Li
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (7): 2375-2387 被引量:42
标识
DOI:10.1109/tfuzz.2021.3081990
摘要

Fuzzy clustering is one of the most popular clustering approaches and has attracted considerable attention in many fields. However, high computational cost has become a bottleneck which limits its applications in large-scale problems. Moreover, most fuzzy clustering algorithms are sensitive to noise. To address these issues, a novel fuzzy clustering algorithm, called fast fuzzy clustering based on anchor graph (FFCAG), is proposed. The FFCAG algorithm integrates anchor-based similarity graph construction and membership matrix learning into a unified framework, such that the prior knowledge of anchors can be further utilized to improve clustering performance. Specifically, FFCAG first constructs an anchor-based similarity graph with a parameter-free neighbor assignment strategy. Then, it designs a quadratic programming model to learn the membership matrix of anchors, which is very different from traditional fuzzy clustering algorithms. More importantly, a novel balanced regularization term is introduced into the objective function to produce more accurate clustering results. Finally, we adopt an alternating optimization algorithm with guaranteed convergence to solve the proposed method. Experimental results performed on synthetic and real-world datasets demonstrate the proposed FFCAG can significantly reduce the computational time with comparable, even superior, clustering performance, compared with state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
高临霖完成签到,获得积分10
3秒前
sxw关闭了sxw文献求助
4秒前
4秒前
5秒前
siijjfjjf发布了新的文献求助10
5秒前
5秒前
night完成签到,获得积分20
5秒前
纸柒完成签到 ,获得积分10
5秒前
干净傲霜完成签到 ,获得积分10
6秒前
罗攀发布了新的文献求助10
6秒前
404完成签到,获得积分10
7秒前
xujingyi发布了新的文献求助10
7秒前
英俊的铭应助weiv采纳,获得10
7秒前
8秒前
寻一完成签到 ,获得积分10
8秒前
9秒前
9秒前
华仔应助金熙美采纳,获得10
11秒前
乌鱼子发布了新的文献求助10
11秒前
Proddy发布了新的文献求助20
11秒前
12秒前
12秒前
小乔应助顺利汉堡采纳,获得10
12秒前
科研菜鸡完成签到,获得积分10
12秒前
健忘的溪灵完成签到 ,获得积分10
13秒前
14秒前
田七发布了新的文献求助10
14秒前
DT发布了新的文献求助10
15秒前
16秒前
科研小弟完成签到,获得积分10
17秒前
龙牙发布了新的文献求助10
17秒前
HT发布了新的文献求助10
17秒前
小白脸发布了新的文献求助10
17秒前
英俊冰岚完成签到 ,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858