Fast Fuzzy Clustering Based on Anchor Graph

计算机科学 聚类分析 树冠聚类算法 约束聚类 数据流聚类 CURE数据聚类算法 模糊聚类 人工智能 数据挖掘 机器学习 相关聚类 算法
作者
Feiping Nie,Chaodie Liu,Rong Wang,Zhen Wang,Xuelong Li
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (7): 2375-2387 被引量:42
标识
DOI:10.1109/tfuzz.2021.3081990
摘要

Fuzzy clustering is one of the most popular clustering approaches and has attracted considerable attention in many fields. However, high computational cost has become a bottleneck which limits its applications in large-scale problems. Moreover, most fuzzy clustering algorithms are sensitive to noise. To address these issues, a novel fuzzy clustering algorithm, called fast fuzzy clustering based on anchor graph (FFCAG), is proposed. The FFCAG algorithm integrates anchor-based similarity graph construction and membership matrix learning into a unified framework, such that the prior knowledge of anchors can be further utilized to improve clustering performance. Specifically, FFCAG first constructs an anchor-based similarity graph with a parameter-free neighbor assignment strategy. Then, it designs a quadratic programming model to learn the membership matrix of anchors, which is very different from traditional fuzzy clustering algorithms. More importantly, a novel balanced regularization term is introduced into the objective function to produce more accurate clustering results. Finally, we adopt an alternating optimization algorithm with guaranteed convergence to solve the proposed method. Experimental results performed on synthetic and real-world datasets demonstrate the proposed FFCAG can significantly reduce the computational time with comparable, even superior, clustering performance, compared with state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysq发布了新的文献求助10
刚刚
恢复出厂设置完成签到 ,获得积分10
刚刚
刚刚
zz发布了新的文献求助10
刚刚
李梦琦发布了新的文献求助10
1秒前
2秒前
飞飏完成签到,获得积分10
2秒前
2秒前
唐山恶少完成签到,获得积分10
2秒前
tjfwg完成签到,获得积分10
2秒前
3秒前
刘老哥6完成签到,获得积分10
3秒前
田様应助科研通管家采纳,获得10
3秒前
劲秉应助科研通管家采纳,获得10
3秒前
Meng应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
Owen应助科研通管家采纳,获得20
3秒前
3秒前
Uniibooy完成签到 ,获得积分10
4秒前
大模型应助永恒亲吻采纳,获得10
5秒前
6秒前
Schwann翠星石完成签到,获得积分10
6秒前
华仔应助李梦琦采纳,获得10
6秒前
via完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
小黄发布了新的文献求助10
8秒前
MOON完成签到,获得积分10
8秒前
8秒前
8秒前
义气的三德完成签到,获得积分10
9秒前
9秒前
9秒前
牵猫散步的鱼完成签到,获得积分10
10秒前
11秒前
灿烂发布了新的文献求助10
11秒前
小李发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298999
求助须知:如何正确求助?哪些是违规求助? 2934058
关于积分的说明 8466290
捐赠科研通 2607414
什么是DOI,文献DOI怎么找? 1423664
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645286