Process optimization of high-speed dry milling UD-CF/PEEK laminates using GA-BP neural network

偷看 材料科学 表面粗糙度 机械加工 纤维 复合材料 人工神经网络 表面光洁度 计算机科学 聚合物 冶金 机器学习
作者
Huajun Cao,Lei Liu,Bo Wu,Yuan Gao,Da Qu
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:221: 109034-109034 被引量:61
标识
DOI:10.1016/j.compositesb.2021.109034
摘要

High-performance carbon fiber-reinforced polyetheretherketone (CF/PEEK) is widely used in aerospace and premium-end medical fields due to its high strength-weight ratio, shock resistance, and reusability. However, its dry machining requirement is a significant limit to improving machining efficiency and machining quality using a traditional process. Addressing this issue, the high-speed dry (HSD) machining technique is imported in this paper. Multi-level mixed orthogonal experiments of dry milling unidirectional (UD) CF/PEEK laminates with the fiber orientation of 0° and 90° are designed. Aiming at quantitative characterizing surface quality, three-dimensional (3D) surface roughness Sq and 3D fractal dimension Ds are used to present surface roughness and surface defects, respectively. A characterization system for surface defects generated in milling CRF/PEEK is proposed. A prediction model of surface quality considering fiber orientation, cutting speed, feed per tooth, and cutting width is then established using the genetic algorithm optimized BP (GA-BP) neural network. The prediction results show that the model is of acceptable generalization capability with a prediction accuracy of over 90.39%. Based on the analysis of surface qualities and cutting temperatures, the HSD machining technique is verified to be feasible in milling UD-CF/PEEK, and the recommended cutting speed in the HSD milling boundary is 1500–1600 m/min. The 3D fractal dimension is verified feasible to evaluate the size of complex surface defects of the machined UD-CF/PEEK. It has a non-rigid negative correlation with Sq in general. Besides, cutting speed and fiber orientation are the key factors affecting the machined surface microstructural characteristics. The present study gives technical references for improving surface quality in HSD milling CF/PEEK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akkord完成签到,获得积分10
刚刚
修梨发布了新的文献求助10
1秒前
雨霁发布了新的文献求助10
1秒前
jxt2023完成签到,获得积分10
1秒前
NexusExplorer应助慧慧采纳,获得10
1秒前
1秒前
哟哟哟发布了新的文献求助10
2秒前
魔力兔子发布了新的文献求助10
2秒前
3秒前
丁亦竹完成签到,获得积分10
3秒前
3秒前
gustavo完成签到,获得积分10
3秒前
jogrgr完成签到,获得积分10
3秒前
小月完成签到,获得积分10
3秒前
搜集达人应助Oay采纳,获得10
4秒前
Mannose完成签到,获得积分10
4秒前
过时的不评完成签到,获得积分10
5秒前
甜美不评完成签到,获得积分10
5秒前
尹博士发布了新的文献求助10
5秒前
深情安青应助雷豪采纳,获得10
6秒前
美好曼荷完成签到 ,获得积分10
6秒前
我是老大应助甜田采纳,获得10
6秒前
happyfei发布了新的文献求助10
6秒前
科目三应助wanci采纳,获得10
6秒前
仲誉完成签到,获得积分10
6秒前
6秒前
小二郎应助笑点低的以亦采纳,获得10
7秒前
7秒前
7秒前
hua发布了新的文献求助10
7秒前
沐沐完成签到,获得积分10
7秒前
昏睡的以寒完成签到,获得积分10
8秒前
8秒前
zzzzzz应助abc采纳,获得10
8秒前
eureka发布了新的文献求助10
9秒前
9秒前
Ava应助cc采纳,获得30
9秒前
小李完成签到,获得积分10
10秒前
nanda完成签到,获得积分10
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308005
求助须知:如何正确求助?哪些是违规求助? 2941518
关于积分的说明 8503953
捐赠科研通 2616072
什么是DOI,文献DOI怎么找? 1429372
科研通“疑难数据库(出版商)”最低求助积分说明 663724
邀请新用户注册赠送积分活动 648679