IoT-based hybrid optimized fuzzy threshold ELM model for localization of elderly persons

计算机科学 模糊逻辑 人工智能 机器学习
作者
Sheetal N. Ghorpade,Marco Zennaro,Bharat S. Chaudhari
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:184: 115500-115500 被引量:18
标识
DOI:10.1016/j.eswa.2021.115500
摘要

• The proposition of the fuzzy logic system (FLS) applied over the centroid and ELM for node localization to handle both the low and the high-density scenarios, respectively. • Designed the control parameter ( k α ) for PSGWO for boosting the decline speed of convergence factor so that local search can be improved and optimization time can be minimized. • Optimized FLS and ELM using PSGWO with a free vector for adjusting approximation precision nearer to the moving node’s actual position. • Proposed a novel population and multi-criteria based soft computing algorithm called hybrid optimized fuzzy threshold extreme learning machine (HOFTELM). Due to the quickly aging population, the number of elderly persons is rapidly increasing, posing significant challenges for monitoring and assisting them in indoor and outdoor settings. Although some techniques are available for the indoor localization of elderly persons, in the coming years, outdoor localization will be an essential part of society. Different approaches such as GPS, range-based, and range-free have been developed for outdoor localization. However, the localization accuracy and precision is still a significant challenge. For accurate and low-cost localization, we propose a novel IoT-based range-based localization for smart city applications. Using the extreme learning machine (ELM), fuzzy system, and modified swarm intelligence, a hybrid optimized fuzzy threshold ELM (HOFTELM) algorithm is developed. The particle swarm grey wolf optimization is used to identify the direction of the moving sensor node. A fuzzy weighted centroid is used to optimize the consequences of irregular movement of the nodes. Lastly, an optimized threshold extreme learning machine and weighted mean are applied to localize the moving nodes accurately. Our algorithm outperforms the existing algorithms in terms of average location error ratio (ALER), the number of localized nodes, and the computational time. The results show that ALER reduces by at least 48.07% in comparison with the other algorithms. The proposed algorithm also localizes at least 7.25% additional nodes and has a computationally efficient operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
whw完成签到,获得积分20
1秒前
所所应助西厢张生采纳,获得10
1秒前
淡定的初夏给遢霧的求助进行了留言
2秒前
exccc发布了新的文献求助20
3秒前
4秒前
阔达雨泽完成签到,获得积分10
4秒前
5秒前
5秒前
洪晖阳完成签到,获得积分10
5秒前
科研通AI2S应助莫三颜采纳,获得10
5秒前
科研通AI6应助liang2508采纳,获得10
7秒前
bobo发布了新的文献求助10
7秒前
7秒前
7秒前
合适翠萱发布了新的文献求助10
8秒前
zho应助科研通管家采纳,获得10
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
9秒前
复杂易形完成签到,获得积分10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382258
求助须知:如何正确求助?哪些是违规求助? 4505455
关于积分的说明 14021836
捐赠科研通 4414879
什么是DOI,文献DOI怎么找? 2425203
邀请新用户注册赠送积分活动 1418008
关于科研通互助平台的介绍 1395964