计算机科学
分割
人工智能
全视子
像素
图像分割
编码器
计算机视觉
政治
政治学
法学
操作系统
作者
Vivien Sainte Fare Garnot,Loic Landrieu
标识
DOI:10.1109/iccv48922.2021.00483
摘要
Unprecedented access to multi-temporal satellite imagery has opened new perspectives for a variety of Earth observation tasks. Among them, pixel-precise panoptic segmentation of agricultural parcels has major economic and environmental implications. While researchers have explored this problem for single images, we argue that the complex temporal patterns of crop phenology are better addressed with temporal sequences of images. In this paper, we present the first end-to-end, single-stage method for panoptic segmentation of Satellite Image Time Series (SITS). This module can be combined with our novel image sequence encoding network which relies on temporal self-attention to extract rich and adaptive multi-scale spatiotemporal features. We also introduce PASTIS, the first open-access SITS dataset with panoptic annotations. We demonstrate the superiority of our encoder for semantic segmentation against multiple competing architectures, and set up the first state-of-the-art of panoptic segmentation of SITS. Our implementation and PASTIS are publicly available.
科研通智能强力驱动
Strongly Powered by AbleSci AI