Interpretable Machine Learning Model for Early Prediction of Mortality in ICU Patients with Rhabdomyolysis

接收机工作特性 机器学习 支持向量机 逻辑回归 曲线下面积 人工智能 医学 梯度升压 随机森林 重症监护 曲线下面积 病历 朴素贝叶斯分类器 重症监护医学 计算机科学 横纹肌溶解症 内科学 药代动力学
作者
Chao Liu,Xiaoli Liu,Min Zhi,Pan Hu,Xiaoming Li,Jie Hu,Quan Hong,Xiaodong Geng,Kun Chi,Feihu Zhou,Guangyan Cai,Xiangmei Chen,Xuefeng Sun
出处
期刊:Medicine and Science in Sports and Exercise [Lippincott Williams & Wilkins]
卷期号:53 (9): 1826-1834 被引量:9
标识
DOI:10.1249/mss.0000000000002674
摘要

Rhabdomyolysis (RM) is a complex set of clinical syndromes that involves the rapid dissolution of skeletal muscles. Mortality from RM is approximately 10%. This study aimed to develop an interpretable and generalizable model for early mortality prediction in RM patients.Retrospective analyses were performed on two electronic medical record databases: the eICU Collaborative Research Database and the Medical Information Mart for Intensive Care III database. We extracted data from the first 24 h after patient ICU admission. Data from the two data sets were merged for further analysis. The merged data sets were randomly divided, with 70% used for training and 30% for validation. We used the machine learning model extreme gradient boosting (XGBoost) with the Shapley additive explanation method to conduct early and interpretable predictions of patient mortality. Five typical evaluation indexes were adopted to develop a generalizable model.In total, 938 patients with RM were eligible for this analysis. The area under the receiver operating characteristic curve (AUC) of the XGBoost model in predicting hospital mortality was 0.871, the sensitivity was 0.885, the specificity was 0.816, the accuracy was 0.915, and the F1 score was 0.624. The XGBoost model performance was superior to that of other models (logistic regression, AUC = 0.862; support vector machine, AUC = 0.843; random forest, AUC = 0.825; and naive Bayesian, AUC = 0.805) and clinical scores (Sequential Organ Failure Assessment, AUC = 0.747; Acute Physiology Score III, AUC = 0.721).Although the XGBoost model is still not great from an absolute performance perspective, it provides better predictive performance than other models for estimating the mortality of patients with RM based on patient characteristics in the first 24 h of admission to the ICU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
终会遇见她呦完成签到,获得积分10
1秒前
1秒前
顺利的若灵完成签到,获得积分10
2秒前
Alioth完成签到,获得积分10
2秒前
ZZZ做实验发布了新的文献求助10
2秒前
小二郎应助飞飞采纳,获得10
2秒前
星星发布了新的文献求助30
3秒前
赘婿应助ppboyindream采纳,获得10
4秒前
lookahead发布了新的文献求助10
4秒前
4秒前
林深时见鹿完成签到,获得积分10
5秒前
5秒前
一个兴趣使然的人完成签到,获得积分10
6秒前
6秒前
加美希尔完成签到,获得积分10
6秒前
耳机单蹦发布了新的文献求助10
6秒前
6秒前
咕噜咕噜发布了新的文献求助10
6秒前
7秒前
行7发布了新的文献求助10
7秒前
Gauss应助fyl采纳,获得30
7秒前
啊阿阿阿沐完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
张豪杰发布了新的文献求助10
9秒前
闻元杰完成签到,获得积分10
9秒前
LISHAN驳回了Arlene应助
9秒前
钩子89完成签到,获得积分10
10秒前
李健应助lili采纳,获得20
10秒前
孙琪发布了新的文献求助10
11秒前
耳机单蹦完成签到,获得积分10
11秒前
欢呼妙菱发布了新的文献求助10
11秒前
an12138完成签到,获得积分10
11秒前
星辰大海应助lorixu采纳,获得10
11秒前
12秒前
sdniuidifod发布了新的文献求助10
12秒前
丰富的妙柏完成签到,获得积分20
12秒前
无昵称发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969335
求助须知:如何正确求助?哪些是违规求助? 3514162
关于积分的说明 11172430
捐赠科研通 3249456
什么是DOI,文献DOI怎么找? 1794853
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804809