Interpretable Machine Learning Model for Early Prediction of Mortality in ICU Patients with Rhabdomyolysis

接收机工作特性 机器学习 支持向量机 逻辑回归 曲线下面积 人工智能 医学 梯度升压 随机森林 重症监护 曲线下面积 病历 朴素贝叶斯分类器 重症监护医学 计算机科学 横纹肌溶解症 内科学 药代动力学
作者
Chao Liu,Xiaoli Liu,Min Zhi,Pan Hu,Xiaoming Li,Jie Hu,Quan Hong,Xiaodong Geng,Kun Chi,Feihu Zhou,Guangyan Cai,Xiangmei Chen,Xuefeng Sun
出处
期刊:Medicine and Science in Sports and Exercise [Lippincott Williams & Wilkins]
卷期号:53 (9): 1826-1834 被引量:9
标识
DOI:10.1249/mss.0000000000002674
摘要

Rhabdomyolysis (RM) is a complex set of clinical syndromes that involves the rapid dissolution of skeletal muscles. Mortality from RM is approximately 10%. This study aimed to develop an interpretable and generalizable model for early mortality prediction in RM patients.Retrospective analyses were performed on two electronic medical record databases: the eICU Collaborative Research Database and the Medical Information Mart for Intensive Care III database. We extracted data from the first 24 h after patient ICU admission. Data from the two data sets were merged for further analysis. The merged data sets were randomly divided, with 70% used for training and 30% for validation. We used the machine learning model extreme gradient boosting (XGBoost) with the Shapley additive explanation method to conduct early and interpretable predictions of patient mortality. Five typical evaluation indexes were adopted to develop a generalizable model.In total, 938 patients with RM were eligible for this analysis. The area under the receiver operating characteristic curve (AUC) of the XGBoost model in predicting hospital mortality was 0.871, the sensitivity was 0.885, the specificity was 0.816, the accuracy was 0.915, and the F1 score was 0.624. The XGBoost model performance was superior to that of other models (logistic regression, AUC = 0.862; support vector machine, AUC = 0.843; random forest, AUC = 0.825; and naive Bayesian, AUC = 0.805) and clinical scores (Sequential Organ Failure Assessment, AUC = 0.747; Acute Physiology Score III, AUC = 0.721).Although the XGBoost model is still not great from an absolute performance perspective, it provides better predictive performance than other models for estimating the mortality of patients with RM based on patient characteristics in the first 24 h of admission to the ICU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mason完成签到,获得积分10
1秒前
yizhe发布了新的文献求助10
1秒前
JamesPei应助zzzz采纳,获得10
2秒前
英俊的铭应助aa采纳,获得30
2秒前
xiaohuhuan完成签到,获得积分10
2秒前
bulingbuling完成签到 ,获得积分10
3秒前
一颗小纽扣完成签到,获得积分10
4秒前
席涑完成签到,获得积分10
5秒前
CipherSage应助拼搏的婷冉采纳,获得10
5秒前
luoluo完成签到 ,获得积分10
6秒前
6秒前
醋炒栗子仁完成签到,获得积分10
6秒前
墨尔根戴青完成签到,获得积分10
7秒前
瑾瑜完成签到,获得积分10
8秒前
文小杰完成签到,获得积分10
8秒前
山月完成签到,获得积分10
9秒前
CodeCraft应助研友_LOK59L采纳,获得10
9秒前
9秒前
10秒前
欣慰妙海完成签到 ,获得积分20
10秒前
CodeCraft应助zhaopeipei采纳,获得10
10秒前
LIUYONG发布了新的文献求助10
11秒前
lin发布了新的文献求助10
13秒前
14秒前
九湖夷上完成签到 ,获得积分10
14秒前
噼里啪啦完成签到 ,获得积分10
15秒前
大个应助hahaha123213123采纳,获得30
15秒前
15秒前
惊天大幂幂完成签到,获得积分10
15秒前
英姑应助Fang Xianxin采纳,获得10
16秒前
宋老师发布了新的文献求助30
16秒前
王洋完成签到,获得积分10
17秒前
lw777完成签到,获得积分20
17秒前
慢慢完成签到,获得积分10
17秒前
18秒前
靖123456发布了新的文献求助10
18秒前
拓跋箴完成签到,获得积分10
18秒前
彭于晏应助zy采纳,获得10
19秒前
精明玲完成签到 ,获得积分10
20秒前
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029