Interpretable Machine Learning Model for Early Prediction of Mortality in ICU Patients with Rhabdomyolysis

接收机工作特性 机器学习 支持向量机 逻辑回归 曲线下面积 人工智能 医学 梯度升压 随机森林 重症监护 曲线下面积 病历 朴素贝叶斯分类器 重症监护医学 计算机科学 横纹肌溶解症 内科学 药代动力学
作者
Chao Liu,Xiaoli Liu,Min Zhi,Pan Hu,Xiaoming Li,Jie Hu,Quan Hong,Xiaodong Geng,Kun Chi,Feihu Zhou,Guangyan Cai,Xiangmei Chen,Xuefeng Sun
出处
期刊:Medicine and Science in Sports and Exercise [Ovid Technologies (Wolters Kluwer)]
卷期号:53 (9): 1826-1834 被引量:9
标识
DOI:10.1249/mss.0000000000002674
摘要

Rhabdomyolysis (RM) is a complex set of clinical syndromes that involves the rapid dissolution of skeletal muscles. Mortality from RM is approximately 10%. This study aimed to develop an interpretable and generalizable model for early mortality prediction in RM patients.Retrospective analyses were performed on two electronic medical record databases: the eICU Collaborative Research Database and the Medical Information Mart for Intensive Care III database. We extracted data from the first 24 h after patient ICU admission. Data from the two data sets were merged for further analysis. The merged data sets were randomly divided, with 70% used for training and 30% for validation. We used the machine learning model extreme gradient boosting (XGBoost) with the Shapley additive explanation method to conduct early and interpretable predictions of patient mortality. Five typical evaluation indexes were adopted to develop a generalizable model.In total, 938 patients with RM were eligible for this analysis. The area under the receiver operating characteristic curve (AUC) of the XGBoost model in predicting hospital mortality was 0.871, the sensitivity was 0.885, the specificity was 0.816, the accuracy was 0.915, and the F1 score was 0.624. The XGBoost model performance was superior to that of other models (logistic regression, AUC = 0.862; support vector machine, AUC = 0.843; random forest, AUC = 0.825; and naive Bayesian, AUC = 0.805) and clinical scores (Sequential Organ Failure Assessment, AUC = 0.747; Acute Physiology Score III, AUC = 0.721).Although the XGBoost model is still not great from an absolute performance perspective, it provides better predictive performance than other models for estimating the mortality of patients with RM based on patient characteristics in the first 24 h of admission to the ICU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾大牛完成签到,获得积分10
刚刚
嗯呐发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
浚稚发布了新的文献求助10
2秒前
甜甜的白枫完成签到,获得积分10
2秒前
我玩安琪拉无敌完成签到,获得积分10
3秒前
3秒前
feitachi发布了新的文献求助30
3秒前
所所应助阿琳采纳,获得10
4秒前
星魂发布了新的文献求助10
5秒前
6秒前
qq发布了新的文献求助10
6秒前
zhangling发布了新的文献求助10
6秒前
7秒前
hihi发布了新的文献求助10
8秒前
sennki发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
11秒前
yuxin发布了新的文献求助10
12秒前
上官若男应助荔枝多酚采纳,获得10
12秒前
希望天下0贩的0应助MADKAI采纳,获得10
13秒前
矫仁瑞完成签到,获得积分10
13秒前
Y.Wang完成签到,获得积分10
13秒前
迷路的小牛马完成签到,获得积分10
14秒前
skyzhw123发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
wangwei完成签到 ,获得积分10
17秒前
丘比特应助CC采纳,获得10
18秒前
JamesPei应助xiaowannamoney采纳,获得10
19秒前
xuex1发布了新的文献求助10
19秒前
sennki完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052