Robust network design for sustainable-resilient reverse logistics network using big data: A case study of end-of-life vehicles

作者
Kannan Govindan,Hadi Gholizadeh
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:149: 102279- 被引量:10
标识
DOI:10.1016/j.tre.2021.102279
摘要

Abstract With new global regulations on supply chains (SCs), sustainable regulation mechanisms have become subject to controversy. The intention is to create and expand green and sustainable supply chains (SSC) to meet environmental and economic standards and to boost one’s position in competitive markets. This study examines the resilient sustainable reverse logistics network (RLN) process for end-of-life vehicles (ELVs) in Iran. We pursue both actual and uncertain situations that possess big data characteristics (3 V’s) in information between facilities of the proposed reverse logistics (RL), and we consider recycling technology due to its societal impacts. Due to unpredictable environmental and social factors, the various proposed network facilities may not utilize their full capacity, so we also consider situations in which the network facility capacity is disrupted. Our primary objective is to minimize the total cost of the resilient sustainable RLN. For most parameters, finding the best solution through traditional methods is time-consuming and costly. Hence, to enhance decision-making power, the value of model parameters in each scenario is considered. A Cross-Entropy (CE) algorithm with basic scenario concepts is used in robust model optimization. The results demonstrate that changing the scenario situation significantly impacts optimal environmental and social costs. In particular, when the situation is “pessimistic,” environmental impact costs are at their highest levels. Hence, scenario-based modeling of the network is a good approach to implement under uncertainty conditions. On the other hand, results show that cost savings for organizations are achieved through optimal planning of the centers' capacity to save cost, increase services, and ensure effective government response to cost-effective and instrumental market competition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轨迹发布了新的文献求助10
1秒前
1秒前
大模型应助lpp采纳,获得10
1秒前
彩色中道发布了新的文献求助10
1秒前
NexusExplorer应助QDU采纳,获得10
2秒前
3秒前
沉静盼易发布了新的文献求助10
3秒前
owlhealth发布了新的文献求助10
3秒前
现代的妍完成签到,获得积分10
3秒前
Yongander完成签到,获得积分20
3秒前
4秒前
李健应助ytong采纳,获得10
4秒前
shuaiwen25完成签到,获得积分10
4秒前
一修发布了新的文献求助10
5秒前
慕青应助邬幼珊采纳,获得10
5秒前
小二郎应助lizhiqian2024采纳,获得10
6秒前
愉快天亦完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
自由如天完成签到,获得积分10
8秒前
沉鱼CXX完成签到,获得积分10
8秒前
8秒前
现代的妍发布了新的文献求助30
8秒前
李健应助北木南采纳,获得10
8秒前
8秒前
baochao完成签到 ,获得积分10
8秒前
lu发布了新的文献求助10
9秒前
深情安青应助景笑天采纳,获得10
9秒前
希望天下0贩的0应助轨迹采纳,获得10
10秒前
10秒前
10秒前
可耐的代梅完成签到,获得积分20
11秒前
淡然的新之完成签到,获得积分10
11秒前
kuoh224发布了新的文献求助10
12秒前
SYLH应助nihaoxiaoai采纳,获得10
12秒前
lylylylyly发布了新的文献求助10
13秒前
202200362009发布了新的文献求助30
13秒前
13秒前
CipherSage应助科研饼采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627