Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion

计算机科学 维数之咒 体素 集合(抽象数据类型) 钥匙(锁) 人工智能 模式识别(心理学) 图像(数学) 体积热力学 构造(python库) 数据挖掘 计算机安全 量子力学 物理 程序设计语言
作者
Steve Kench,Samuel J. Cooper
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (4): 299-305 被引量:144
标识
DOI:10.1038/s42256-021-00322-1
摘要

Generative adversarial networks (GANs) can be trained to generate three-dimensional (3D) image data, which are useful for design optimization. However, this conventionally requires 3D training data, which are challenging to obtain. Two-dimensional (2D) imaging techniques tend to be faster, higher resolution, better at phase identification and more widely available. Here we introduce a GAN architecture, SliceGAN, that is able to synthesize high-fidelity 3D datasets using a single representative 2D image. This is especially relevant for the task of material microstructure generation, as a cross-sectional micrograph can contain sufficient information to statistically reconstruct 3D samples. Our architecture implements the concept of uniform information density, which ensures both that generated volumes are equally high quality at all points in space and that arbitrarily large volumes can be generated. SliceGAN has been successfully trained on a diverse set of materials, demonstrating the widespread applicability of this tool. The quality of generated micrographs is shown through a statistical comparison of synthetic and real datasets of a battery electrode in terms of key microstructural metrics. Finally, we find that the generation time for a 108 voxel volume is on the order of a few seconds, yielding a path for future studies into high-throughput microstructural optimization. A generative approach called SliceGAN is demonstrated that can construct complex three-dimensional (3D) images from representative two-dimensional (2D) image examples. This is a promising approach in particular for studying microstructured materials where acquiring good-quality 3D data is challenging; 3D datasets can be created with SliceGAN, making use of high-quality 2D imaging techniques that are widely available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐灵安完成签到,获得积分10
刚刚
hu完成签到,获得积分10
刚刚
牧长一完成签到 ,获得积分0
1秒前
1秒前
柠橙发布了新的文献求助10
1秒前
ll发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
bb发布了新的文献求助10
2秒前
李健的粉丝团团长应助11采纳,获得10
3秒前
xxyh完成签到,获得积分10
3秒前
闪闪的书本完成签到 ,获得积分10
4秒前
changyee发布了新的文献求助10
4秒前
NINI发布了新的文献求助10
4秒前
4秒前
李铮发布了新的文献求助10
4秒前
哈哈哈哈啊哈完成签到,获得积分10
4秒前
所所应助99668采纳,获得10
5秒前
Jim完成签到,获得积分10
5秒前
吃的了细糠的山猪完成签到,获得积分10
6秒前
妮妮发布了新的文献求助10
6秒前
夏天不回来完成签到,获得积分10
6秒前
施xy完成签到,获得积分10
6秒前
慕青应助mbf采纳,获得10
6秒前
gyz发布了新的文献求助10
7秒前
少少少完成签到,获得积分10
7秒前
wangtongxue完成签到 ,获得积分10
7秒前
等待的易梦完成签到 ,获得积分10
9秒前
10秒前
Aqua完成签到,获得积分10
10秒前
Windsea完成签到,获得积分10
11秒前
怡然曼彤完成签到 ,获得积分20
11秒前
jjb123666完成签到,获得积分20
11秒前
打打应助布鲁采纳,获得10
12秒前
在水一方应助Neon0524采纳,获得10
12秒前
呢n完成签到 ,获得积分10
12秒前
Ramer556完成签到,获得积分10
13秒前
可靠小凝完成签到 ,获得积分10
13秒前
卑微学术人完成签到 ,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152244
求助须知:如何正确求助?哪些是违规求助? 2803512
关于积分的说明 7854215
捐赠科研通 2461077
什么是DOI,文献DOI怎么找? 1310159
科研通“疑难数据库(出版商)”最低求助积分说明 629126
版权声明 601765