Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion

计算机科学 维数之咒 生成对抗网络 生成语法 对抗制 人工智能 深度学习
作者
Steve Kench,Samuel J. Cooper
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (4): 299-305 被引量:194
标识
DOI:10.1038/s42256-021-00322-1
摘要

Generative adversarial networks (GANs) can be trained to generate three-dimensional (3D) image data, which are useful for design optimization. However, this conventionally requires 3D training data, which are challenging to obtain. Two-dimensional (2D) imaging techniques tend to be faster, higher resolution, better at phase identification and more widely available. Here we introduce a GAN architecture, SliceGAN, that is able to synthesize high-fidelity 3D datasets using a single representative 2D image. This is especially relevant for the task of material microstructure generation, as a cross-sectional micrograph can contain sufficient information to statistically reconstruct 3D samples. Our architecture implements the concept of uniform information density, which ensures both that generated volumes are equally high quality at all points in space and that arbitrarily large volumes can be generated. SliceGAN has been successfully trained on a diverse set of materials, demonstrating the widespread applicability of this tool. The quality of generated micrographs is shown through a statistical comparison of synthetic and real datasets of a battery electrode in terms of key microstructural metrics. Finally, we find that the generation time for a 108 voxel volume is on the order of a few seconds, yielding a path for future studies into high-throughput microstructural optimization. A generative approach called SliceGAN is demonstrated that can construct complex three-dimensional (3D) images from representative two-dimensional (2D) image examples. This is a promising approach in particular for studying microstructured materials where acquiring good-quality 3D data is challenging; 3D datasets can be created with SliceGAN, making use of high-quality 2D imaging techniques that are widely available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wufel2完成签到,获得积分10
刚刚
liangmh发布了新的文献求助10
刚刚
刚刚
淡然的萝发布了新的文献求助10
刚刚
Akim应助耍酷问兰采纳,获得10
1秒前
1秒前
1秒前
1秒前
皮半鬼发布了新的文献求助10
1秒前
1秒前
大模型应助刻苦惜霜采纳,获得10
2秒前
的速度发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
ddd完成签到,获得积分10
3秒前
阳佟怀绿发布了新的文献求助10
3秒前
川藏客发布了新的文献求助10
3秒前
MuZY完成签到,获得积分20
3秒前
Q W完成签到,获得积分10
3秒前
4秒前
梅干菜鲜肉粽完成签到,获得积分10
4秒前
笨鸟先飞完成签到 ,获得积分10
4秒前
幸福胡萝卜完成签到,获得积分10
4秒前
MuZY发布了新的文献求助10
6秒前
满意的盼柳完成签到,获得积分10
6秒前
卡卡发布了新的文献求助10
6秒前
7秒前
haoyooo发布了新的文献求助10
7秒前
SDP发布了新的文献求助10
7秒前
7秒前
8秒前
大个应助han采纳,获得10
8秒前
wufel完成签到,获得积分10
8秒前
8秒前
8秒前
真的困发布了新的文献求助20
8秒前
香蕉觅云应助鱼鱼采纳,获得10
8秒前
英俊的铭应助chen采纳,获得10
8秒前
Echo1128完成签到 ,获得积分10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316