Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion

计算机科学 维数之咒 生成对抗网络 生成语法 对抗制 人工智能 深度学习
作者
Steve Kench,Samuel J. Cooper
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (4): 299-305 被引量:237
标识
DOI:10.1038/s42256-021-00322-1
摘要

Generative adversarial networks (GANs) can be trained to generate three-dimensional (3D) image data, which are useful for design optimization. However, this conventionally requires 3D training data, which are challenging to obtain. Two-dimensional (2D) imaging techniques tend to be faster, higher resolution, better at phase identification and more widely available. Here we introduce a GAN architecture, SliceGAN, that is able to synthesize high-fidelity 3D datasets using a single representative 2D image. This is especially relevant for the task of material microstructure generation, as a cross-sectional micrograph can contain sufficient information to statistically reconstruct 3D samples. Our architecture implements the concept of uniform information density, which ensures both that generated volumes are equally high quality at all points in space and that arbitrarily large volumes can be generated. SliceGAN has been successfully trained on a diverse set of materials, demonstrating the widespread applicability of this tool. The quality of generated micrographs is shown through a statistical comparison of synthetic and real datasets of a battery electrode in terms of key microstructural metrics. Finally, we find that the generation time for a 108 voxel volume is on the order of a few seconds, yielding a path for future studies into high-throughput microstructural optimization. A generative approach called SliceGAN is demonstrated that can construct complex three-dimensional (3D) images from representative two-dimensional (2D) image examples. This is a promising approach in particular for studying microstructured materials where acquiring good-quality 3D data is challenging; 3D datasets can be created with SliceGAN, making use of high-quality 2D imaging techniques that are widely available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢子轩发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
luxiaoyu完成签到,获得积分10
1秒前
vm光荣发布了新的文献求助10
2秒前
zzyytt完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Terrya完成签到,获得积分10
3秒前
单纯的又菱完成签到,获得积分10
3秒前
大胆的向日葵完成签到,获得积分10
4秒前
aishaniya发布了新的文献求助10
4秒前
4秒前
4秒前
西塘古镇的独角兽完成签到,获得积分10
4秒前
河丫完成签到,获得积分10
5秒前
SciGPT应助17采纳,获得10
5秒前
Stone发布了新的文献求助10
6秒前
笑傲飞月完成签到,获得积分20
7秒前
7秒前
852应助沉默的倔驴采纳,获得10
8秒前
所所应助沉默的倔驴采纳,获得10
8秒前
515完成签到,获得积分10
9秒前
rhsfdfb发布了新的文献求助10
10秒前
10秒前
11秒前
烟花应助yy采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
所所应助独特煎饼采纳,获得10
17秒前
19秒前
Linsoon完成签到,获得积分20
19秒前
20秒前
喵喵发布了新的文献求助10
21秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752683
求助须知:如何正确求助?哪些是违规求助? 5476106
关于积分的说明 15374754
捐赠科研通 4891582
什么是DOI,文献DOI怎么找? 2630561
邀请新用户注册赠送积分活动 1578788
关于科研通互助平台的介绍 1534675