Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion

计算机科学 维数之咒 生成对抗网络 生成语法 对抗制 人工智能 深度学习
作者
Steve Kench,Samuel J. Cooper
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (4): 299-305 被引量:219
标识
DOI:10.1038/s42256-021-00322-1
摘要

Generative adversarial networks (GANs) can be trained to generate three-dimensional (3D) image data, which are useful for design optimization. However, this conventionally requires 3D training data, which are challenging to obtain. Two-dimensional (2D) imaging techniques tend to be faster, higher resolution, better at phase identification and more widely available. Here we introduce a GAN architecture, SliceGAN, that is able to synthesize high-fidelity 3D datasets using a single representative 2D image. This is especially relevant for the task of material microstructure generation, as a cross-sectional micrograph can contain sufficient information to statistically reconstruct 3D samples. Our architecture implements the concept of uniform information density, which ensures both that generated volumes are equally high quality at all points in space and that arbitrarily large volumes can be generated. SliceGAN has been successfully trained on a diverse set of materials, demonstrating the widespread applicability of this tool. The quality of generated micrographs is shown through a statistical comparison of synthetic and real datasets of a battery electrode in terms of key microstructural metrics. Finally, we find that the generation time for a 108 voxel volume is on the order of a few seconds, yielding a path for future studies into high-throughput microstructural optimization. A generative approach called SliceGAN is demonstrated that can construct complex three-dimensional (3D) images from representative two-dimensional (2D) image examples. This is a promising approach in particular for studying microstructured materials where acquiring good-quality 3D data is challenging; 3D datasets can be created with SliceGAN, making use of high-quality 2D imaging techniques that are widely available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助小陈总采纳,获得10
刚刚
1秒前
阳光保温杯完成签到 ,获得积分10
1秒前
1秒前
1秒前
RrOrange完成签到,获得积分10
2秒前
务实奎完成签到,获得积分10
2秒前
一期一会完成签到,获得积分10
3秒前
sunyanghu369发布了新的文献求助10
3秒前
Kinkrit完成签到 ,获得积分10
3秒前
英俊的铭应助复杂曼梅采纳,获得10
3秒前
萧萧完成签到,获得积分10
3秒前
Reese发布了新的文献求助10
4秒前
4秒前
小郑顺利毕业完成签到,获得积分10
4秒前
lin完成签到,获得积分20
4秒前
5秒前
AAA完成签到,获得积分10
6秒前
阿佳发布了新的文献求助10
7秒前
科研通AI6应助changewoo采纳,获得10
7秒前
华仔应助大海采纳,获得10
9秒前
skywalker完成签到,获得积分10
9秒前
9秒前
10秒前
123456发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助hulahula采纳,获得10
11秒前
爆米花应助勤恳怀梦采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
12秒前
12秒前
Akim应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
希望天下0贩的0应助helo采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
怕黑犀牛应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057