Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing

药物重新定位 聚类分析 重新调整用途 主成分分析 药品 计算机科学 药物发现 人工智能 无监督学习 机器学习 计算生物学 数据挖掘 模式识别(心理学) 生物信息学 药理学 医学 生物 生态学
作者
Sita Sirisha Madugula,Lijo John,Selvaraman Nagamani,Anamika Singh Gaur,Vladimir Poroikov,G. Narahari Sastry
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:138: 104856-104856 被引量:14
标识
DOI:10.1016/j.compbiomed.2021.104856
摘要

Machine learning and data-driven approaches are currently being widely used in drug discovery and development due to their potential advantages in decision-making based on the data leveraged from existing sources. Applying these approaches to drug repurposing (DR) studies can identify new relationships between drug molecules, therapeutic targets and diseases that will eventually help in generating new insights for developing novel therapeutics. In the current study, a dataset of 1671 approved drugs is analyzed using a combined approach involving unsupervised Machine Learning (ML) techniques (Principal Component Analysis (PCA) followed by k-means clustering) and Structure-Activity Relationships (SAR) predictions for DR. PCA is applied on all the two dimensional (2D) molecular descriptors of the dataset and the first five Principal Components (PC) were subsequently used to cluster the drugs into nine well separated clusters using k-means algorithm. We further predicted the biological activities for the drug-dataset using the PASS (Predicted Activities Spectra of Substances) tool. These predicted activity values are analyzed systematically to identify repurposable drugs for various diseases. Clustering patterns obtained from k-means showed that every cluster contains subgroups of structurally similar drugs that may or may not have similar therapeutic indications. We hypothesized that such structurally similar but therapeutically different drugs can be repurposed for the native indications of other drugs of the same cluster based on their high predicted biological activities obtained from PASS analysis. In line with this, we identified 66 drugs from the nine clusters which are structurally similar but have different therapeutic uses and can therefore be repurposed for one or more native indications of other drugs of the same cluster. Some of these drugs not only share a common substructure but also bind to the same target and may have a similar mechanism of action, further supporting our hypothesis. Furthermore, based on the analysis of predicted biological activities, we identified 1423 drugs that can be repurposed for 366 new indications against several diseases. In this study, an integrated approach of unsupervised ML and SAR analysis have been used to identify new indications for approved drugs and the study provides novel insights into clustering patterns generated through descriptor level analysis of approved drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nnn完成签到 ,获得积分10
刚刚
胡兴完成签到,获得积分10
刚刚
1秒前
1秒前
sh131完成签到,获得积分10
1秒前
刘十三完成签到,获得积分10
2秒前
银包铜关注了科研通微信公众号
2秒前
花生四烯酸完成签到,获得积分10
2秒前
3秒前
归海听云发布了新的文献求助10
4秒前
丰富的野狼完成签到 ,获得积分10
4秒前
5秒前
粉面菜蛋完成签到,获得积分10
5秒前
不吃橘子完成签到,获得积分10
5秒前
KJ完成签到,获得积分10
6秒前
suhang2024发布了新的文献求助10
7秒前
7秒前
自觉画笔完成签到 ,获得积分10
8秒前
8秒前
友好凌柏完成签到 ,获得积分10
8秒前
豆芽完成签到,获得积分10
8秒前
Leo完成签到,获得积分10
8秒前
vera完成签到,获得积分10
8秒前
9秒前
火星上的糖豆完成签到,获得积分10
9秒前
Aprial完成签到,获得积分10
9秒前
阿巴阿巴完成签到,获得积分10
9秒前
小事完成签到 ,获得积分10
9秒前
南城雨落完成签到,获得积分10
9秒前
多吃青菜完成签到,获得积分10
9秒前
端庄幻桃完成签到 ,获得积分10
11秒前
情怀应助缪格采纳,获得10
12秒前
乐情完成签到,获得积分10
12秒前
星川完成签到,获得积分20
12秒前
lhnee发布了新的文献求助10
13秒前
13秒前
冷傲奇迹完成签到,获得积分10
13秒前
天天快乐应助成就的寒天采纳,获得10
14秒前
屠夫9441完成签到 ,获得积分10
14秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044