亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing

药物重新定位 聚类分析 重新调整用途 主成分分析 药品 计算机科学 药物发现 人工智能 无监督学习 机器学习 计算生物学 数据挖掘 模式识别(心理学) 生物信息学 药理学 医学 生物 生态学
作者
Sita Sirisha Madugula,Lijo John,Selvaraman Nagamani,Anamika Singh Gaur,Vladimir Poroikov,G. Narahari Sastry
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:138: 104856-104856 被引量:14
标识
DOI:10.1016/j.compbiomed.2021.104856
摘要

Machine learning and data-driven approaches are currently being widely used in drug discovery and development due to their potential advantages in decision-making based on the data leveraged from existing sources. Applying these approaches to drug repurposing (DR) studies can identify new relationships between drug molecules, therapeutic targets and diseases that will eventually help in generating new insights for developing novel therapeutics. In the current study, a dataset of 1671 approved drugs is analyzed using a combined approach involving unsupervised Machine Learning (ML) techniques (Principal Component Analysis (PCA) followed by k-means clustering) and Structure-Activity Relationships (SAR) predictions for DR. PCA is applied on all the two dimensional (2D) molecular descriptors of the dataset and the first five Principal Components (PC) were subsequently used to cluster the drugs into nine well separated clusters using k-means algorithm. We further predicted the biological activities for the drug-dataset using the PASS (Predicted Activities Spectra of Substances) tool. These predicted activity values are analyzed systematically to identify repurposable drugs for various diseases. Clustering patterns obtained from k-means showed that every cluster contains subgroups of structurally similar drugs that may or may not have similar therapeutic indications. We hypothesized that such structurally similar but therapeutically different drugs can be repurposed for the native indications of other drugs of the same cluster based on their high predicted biological activities obtained from PASS analysis. In line with this, we identified 66 drugs from the nine clusters which are structurally similar but have different therapeutic uses and can therefore be repurposed for one or more native indications of other drugs of the same cluster. Some of these drugs not only share a common substructure but also bind to the same target and may have a similar mechanism of action, further supporting our hypothesis. Furthermore, based on the analysis of predicted biological activities, we identified 1423 drugs that can be repurposed for 366 new indications against several diseases. In this study, an integrated approach of unsupervised ML and SAR analysis have been used to identify new indications for approved drugs and the study provides novel insights into clustering patterns generated through descriptor level analysis of approved drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chxxxxx发布了新的文献求助10
2秒前
5秒前
崔凝荷发布了新的文献求助10
10秒前
chxxxxx完成签到,获得积分10
11秒前
fhznuli完成签到,获得积分10
11秒前
22秒前
shenhai发布了新的文献求助10
28秒前
烟花应助fhznuli采纳,获得10
31秒前
向远完成签到 ,获得积分10
36秒前
40秒前
fhznuli发布了新的文献求助10
44秒前
47秒前
田様应助小葡萄采纳,获得10
49秒前
深情安青应助shenhai采纳,获得10
54秒前
HuiHui发布了新的文献求助10
54秒前
Orange应助weining采纳,获得10
1分钟前
HuiHui完成签到,获得积分10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
weining发布了新的文献求助10
1分钟前
墨言无殇完成签到 ,获得积分10
1分钟前
xiaowang完成签到 ,获得积分10
1分钟前
乐乐乐乐乐乐应助西早采纳,获得10
1分钟前
weining完成签到,获得积分10
1分钟前
大个应助崔凝荷采纳,获得10
2分钟前
Julie完成签到 ,获得积分10
2分钟前
冰西瓜完成签到 ,获得积分10
2分钟前
sirius完成签到,获得积分10
2分钟前
2分钟前
微风打了烊完成签到 ,获得积分10
2分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
捉迷藏完成签到,获得积分10
3分钟前
彩色莞完成签到 ,获得积分10
3分钟前
西早给西早的求助进行了留言
3分钟前
哈哈哈完成签到,获得积分10
4分钟前
D1fficulty完成签到 ,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784065
捐赠科研通 2444016
什么是DOI,文献DOI怎么找? 1299627
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989