Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing

药物重新定位 聚类分析 重新调整用途 主成分分析 药品 计算机科学 药物发现 人工智能 无监督学习 机器学习 计算生物学 数据挖掘 模式识别(心理学) 生物信息学 药理学 医学 生物 生态学
作者
Sita Sirisha Madugula,Lijo John,Selvaraman Nagamani,Anamika Singh Gaur,Vladimir Poroikov,G. Narahari Sastry
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:138: 104856-104856 被引量:14
标识
DOI:10.1016/j.compbiomed.2021.104856
摘要

Machine learning and data-driven approaches are currently being widely used in drug discovery and development due to their potential advantages in decision-making based on the data leveraged from existing sources. Applying these approaches to drug repurposing (DR) studies can identify new relationships between drug molecules, therapeutic targets and diseases that will eventually help in generating new insights for developing novel therapeutics. In the current study, a dataset of 1671 approved drugs is analyzed using a combined approach involving unsupervised Machine Learning (ML) techniques (Principal Component Analysis (PCA) followed by k-means clustering) and Structure-Activity Relationships (SAR) predictions for DR. PCA is applied on all the two dimensional (2D) molecular descriptors of the dataset and the first five Principal Components (PC) were subsequently used to cluster the drugs into nine well separated clusters using k-means algorithm. We further predicted the biological activities for the drug-dataset using the PASS (Predicted Activities Spectra of Substances) tool. These predicted activity values are analyzed systematically to identify repurposable drugs for various diseases. Clustering patterns obtained from k-means showed that every cluster contains subgroups of structurally similar drugs that may or may not have similar therapeutic indications. We hypothesized that such structurally similar but therapeutically different drugs can be repurposed for the native indications of other drugs of the same cluster based on their high predicted biological activities obtained from PASS analysis. In line with this, we identified 66 drugs from the nine clusters which are structurally similar but have different therapeutic uses and can therefore be repurposed for one or more native indications of other drugs of the same cluster. Some of these drugs not only share a common substructure but also bind to the same target and may have a similar mechanism of action, further supporting our hypothesis. Furthermore, based on the analysis of predicted biological activities, we identified 1423 drugs that can be repurposed for 366 new indications against several diseases. In this study, an integrated approach of unsupervised ML and SAR analysis have been used to identify new indications for approved drugs and the study provides novel insights into clustering patterns generated through descriptor level analysis of approved drugs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周全敏发布了新的文献求助20
刚刚
萄哥布鸽发布了新的文献求助10
2秒前
JosephCobb发布了新的文献求助10
2秒前
18183389686发布了新的文献求助10
3秒前
3秒前
多巴不胺发布了新的文献求助10
3秒前
852应助爱笑以松采纳,获得10
3秒前
Patrick发布了新的文献求助10
4秒前
我真找不到应助影1采纳,获得50
4秒前
赘婿应助鳗鱼山河采纳,获得10
5秒前
5秒前
SciGPT应助旋光活性采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
聪慧冰淇淋完成签到 ,获得积分10
6秒前
7秒前
7秒前
英俊的铭应助TTRRCEB采纳,获得10
7秒前
8秒前
xyg发布了新的文献求助10
8秒前
CipherSage应助木子采纳,获得10
8秒前
声声发布了新的文献求助10
8秒前
动听曼卉完成签到 ,获得积分10
8秒前
汉堡包应助值得采纳,获得10
9秒前
狂野的凝莲关注了科研通微信公众号
10秒前
小马甲应助爱吃米线采纳,获得10
10秒前
爆米花应助Pluto采纳,获得30
11秒前
aliensinger发布了新的文献求助10
11秒前
JosephCobb完成签到,获得积分10
12秒前
wwwwyx完成签到,获得积分10
12秒前
哈哈发布了新的文献求助10
12秒前
13秒前
tata1945发布了新的文献求助10
13秒前
Sarina发布了新的文献求助10
13秒前
14秒前
所所应助内向宝马采纳,获得10
14秒前
15秒前
加油加油研究研究完成签到 ,获得积分10
15秒前
orixero应助王王碎冰冰采纳,获得10
15秒前
英俊中心完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501