亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing

药物重新定位 聚类分析 重新调整用途 主成分分析 药品 计算机科学 药物发现 人工智能 无监督学习 机器学习 计算生物学 数据挖掘 模式识别(心理学) 生物信息学 药理学 医学 生物 生态学
作者
Sita Sirisha Madugula,Lijo John,Selvaraman Nagamani,Anamika Singh Gaur,Vladimir Poroikov,G. Narahari Sastry
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:138: 104856-104856 被引量:14
标识
DOI:10.1016/j.compbiomed.2021.104856
摘要

Machine learning and data-driven approaches are currently being widely used in drug discovery and development due to their potential advantages in decision-making based on the data leveraged from existing sources. Applying these approaches to drug repurposing (DR) studies can identify new relationships between drug molecules, therapeutic targets and diseases that will eventually help in generating new insights for developing novel therapeutics. In the current study, a dataset of 1671 approved drugs is analyzed using a combined approach involving unsupervised Machine Learning (ML) techniques (Principal Component Analysis (PCA) followed by k-means clustering) and Structure-Activity Relationships (SAR) predictions for DR. PCA is applied on all the two dimensional (2D) molecular descriptors of the dataset and the first five Principal Components (PC) were subsequently used to cluster the drugs into nine well separated clusters using k-means algorithm. We further predicted the biological activities for the drug-dataset using the PASS (Predicted Activities Spectra of Substances) tool. These predicted activity values are analyzed systematically to identify repurposable drugs for various diseases. Clustering patterns obtained from k-means showed that every cluster contains subgroups of structurally similar drugs that may or may not have similar therapeutic indications. We hypothesized that such structurally similar but therapeutically different drugs can be repurposed for the native indications of other drugs of the same cluster based on their high predicted biological activities obtained from PASS analysis. In line with this, we identified 66 drugs from the nine clusters which are structurally similar but have different therapeutic uses and can therefore be repurposed for one or more native indications of other drugs of the same cluster. Some of these drugs not only share a common substructure but also bind to the same target and may have a similar mechanism of action, further supporting our hypothesis. Furthermore, based on the analysis of predicted biological activities, we identified 1423 drugs that can be repurposed for 366 new indications against several diseases. In this study, an integrated approach of unsupervised ML and SAR analysis have been used to identify new indications for approved drugs and the study provides novel insights into clustering patterns generated through descriptor level analysis of approved drugs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助MgZn采纳,获得10
2秒前
3秒前
也是难得取个名完成签到 ,获得积分10
3秒前
5秒前
元神完成签到 ,获得积分10
8秒前
科目三应助只为更出色采纳,获得10
16秒前
17秒前
王彦霖完成签到,获得积分10
20秒前
22秒前
Su发布了新的文献求助20
22秒前
29秒前
量子星尘发布了新的文献求助10
33秒前
科研通AI6应助sfwer采纳,获得30
40秒前
只为更出色完成签到,获得积分10
42秒前
欣喜的人龙完成签到 ,获得积分10
44秒前
46秒前
48秒前
海洋球完成签到,获得积分10
55秒前
kevin完成签到 ,获得积分10
56秒前
57秒前
图南完成签到 ,获得积分10
59秒前
Edou完成签到 ,获得积分10
1分钟前
leeSongha完成签到 ,获得积分10
1分钟前
熬夜写论文完成签到,获得积分20
1分钟前
Astoria完成签到,获得积分10
1分钟前
科研通AI6应助Suda采纳,获得10
1分钟前
LL完成签到,获得积分10
1分钟前
科研通AI6应助江江采纳,获得10
1分钟前
小王完成签到 ,获得积分10
1分钟前
哈比人linling完成签到,获得积分10
1分钟前
1分钟前
乐观的洋葱完成签到,获得积分10
1分钟前
1分钟前
zzcres完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
lw发布了新的文献求助10
1分钟前
1分钟前
个性半山完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509353
求助须知:如何正确求助?哪些是违规求助? 4604314
关于积分的说明 14489571
捐赠科研通 4539026
什么是DOI,文献DOI怎么找? 2487276
邀请新用户注册赠送积分活动 1469709
关于科研通互助平台的介绍 1441934