Graphene oxide proton permselective membrane for electrodialysis-based waste acid reclamation: Simulation and validation

氧化物 石墨烯 化学工程 材料科学 水溶液中的金属离子 电渗析 金属 多孔性 离子 工作(物理) 化学 无机化学 纳米技术 复合材料 有机化学 机械工程 生物化学 工程类
作者
Pan Wang,Yu Jia,Ru Yan,Meng Wang
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:640: 119853-119853 被引量:7
标识
DOI:10.1016/j.memsci.2021.119853
摘要

Nowadays, the development of novel technology for economical and efficient reclamation of waste acid containing metal ions is still the top priority. The graphene oxide (GO)-based membrane has gained attention in the relevant membrane processes driven by pressure gradient, concentration difference and even Donnan potential because of its special two-dimension (2D) structure and abundant hydrophilic sites. However, its work performances for electrodialysis (ED)-based acid recovery process are still unknown. In this work, GO-based proton permselective membranes (PPM) are designed and applied in the ED-based acid recovery. Above all, the possibility of selective separating protons from metal cations by GO membrane under a direct electric field and the related influencing factors are comprehensively explored by molecular dynamic simulation. Furthermore, a series of GO-based PPMs with designed thickness, interlayer spacing and charged state are prepared by adjusting GO loading, employing different crosslinking agents and attaching the relevant polyelectrolytes. Therein, the work performances of GO-based PPMs in a typical ion substitution ED process, including the metal cation leakage, water transport phenomenon and nonideal migration of anions are investigated and compared with those of commercial membrane. Results show that GO membranes prepared and used according to the optimized conditions embrace sharp separating property between protons and metal ions which is hardly deteriorated along with the change of their relative content. On the other hand, it is noticed that the leakage of organic anions and water transport seem to be unavoidable due to the exploitation of the porous support. Obviously, this work can contribute to not only developing a novel PPM for ED but extending the applications of the 2D nanomaterial as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
科研通AI2S应助zn采纳,获得10
刚刚
Axel完成签到,获得积分10
刚刚
天明完成签到,获得积分10
2秒前
Liu发布了新的文献求助10
3秒前
沐阳完成签到,获得积分10
4秒前
今麦郎发布了新的文献求助10
4秒前
5秒前
丘比特应助在远方采纳,获得10
5秒前
pluto应助专注的紫文采纳,获得10
6秒前
9秒前
10秒前
韩靖仇发布了新的文献求助10
11秒前
zho发布了新的文献求助10
11秒前
like发布了新的文献求助10
12秒前
13秒前
林安完成签到,获得积分10
13秒前
坦率依玉发布了新的文献求助10
14秒前
qyq完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
16秒前
liang发布了新的文献求助10
16秒前
16秒前
Liu发布了新的文献求助10
17秒前
虚幻花卷完成签到,获得积分10
18秒前
马上有钱完成签到,获得积分10
18秒前
神勇的长颈鹿完成签到 ,获得积分10
18秒前
果冻泥发布了新的文献求助10
19秒前
毛豆爸爸发布了新的文献求助10
19秒前
科研通AI2S应助农大彭于晏采纳,获得10
20秒前
在远方发布了新的文献求助10
21秒前
21秒前
上官若男应助乐乐采纳,获得10
22秒前
sekidesu发布了新的文献求助10
22秒前
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129723
求助须知:如何正确求助?哪些是违规求助? 2780500
关于积分的说明 7748555
捐赠科研通 2435832
什么是DOI,文献DOI怎么找? 1294313
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570