CatBoost — An Ensemble Machine Learning Model for Prediction and Classification of Student Academic Performance

集成学习 机器学习 人工智能 计算机科学 集合预报
作者
Abhisht Joshi,Pranay Saggar,Rajat Jain,Moolchand Sharma,Deepak Gupta,Ashish K. Khanna
出处
期刊:Advances in data science and adaptive analysis [World Scientific]
卷期号:13 (03n04)
标识
DOI:10.1142/s2424922x21410023
摘要

In every educational institution, predicting pupils’ performance is a vital responsibility. Due to this, a variety of data mining techniques, such as clustering, classification, and regression, are applied to anticipate the learner’s study behavior. By Machine Learning’s arrival, it has become vital to forecast students’ academic achievement, and this study attracts significant attention within the scientific community. In addition, the findings from this work have tremendous socio-economic consequences. One area of major research in the world of education today is educational data mining, which is the study of techniques to reveal hidden patterns in educational data. Data mining strategies succeed or fail to depend on the type and quality of the data that is being mined. Here, we provide a novel method that enhances the accuracy of prior student performance prediction by identifying and providing an explanation as to why it is rising. Using our robust machine learning ensemble models, we propose and evaluate a prediction model. The findings demonstrate that our CatBoost — an ensemble machine learning model — is superior to standard machine learning models with an accuracy of 92.27%. This new model was able to show itself to be dependable by the use of smote and hyperparameter optimization, which proved to be valuable methods and approaches. Additional features are significant as well. More critically, a unique method is utilized to increase model transparency. The SHAP values are a valuable part of the student performance prediction system, which we think should be integrated. For those educators tasked with using prediction models in education, we have found that there is a preference for models that offer both insightful insights and easy to understand predictions, as by utilizing our experiment the educator will be able to identify those students who are at early risk and inspire and encourage these students in a positive way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
想跟这个世界讲个道理完成签到,获得积分10
1秒前
阔达书雪发布了新的文献求助10
1秒前
付品聪完成签到,获得积分10
2秒前
犹豫的夏旋完成签到 ,获得积分10
6秒前
倾住发布了新的文献求助10
6秒前
paobashan发布了新的文献求助10
7秒前
行走的车完成签到,获得积分10
8秒前
zhaoxi完成签到 ,获得积分10
8秒前
jiao完成签到,获得积分10
10秒前
锐0105完成签到,获得积分10
11秒前
make217完成签到 ,获得积分10
11秒前
鹏1989完成签到,获得积分10
11秒前
田様应助等待的花生采纳,获得10
13秒前
14秒前
蓝天海完成签到,获得积分0
16秒前
瘦瘦的枫叶完成签到 ,获得积分10
16秒前
断章完成签到 ,获得积分10
18秒前
木野狐发布了新的文献求助10
19秒前
19秒前
man发布了新的文献求助10
24秒前
李健应助锐0105采纳,获得30
25秒前
puff完成签到,获得积分10
27秒前
28秒前
ppg123应助木野狐采纳,获得30
28秒前
搜集达人应助木野狐采纳,获得30
28秒前
ZJ-195完成签到,获得积分10
29秒前
英俊的铭应助付品聪采纳,获得10
29秒前
31秒前
传奇3应助生活于微采纳,获得10
32秒前
33秒前
36秒前
tuanheqi应助善良夜梅采纳,获得50
36秒前
37秒前
二萌完成签到,获得积分10
38秒前
38秒前
Blueyi发布了新的文献求助10
40秒前
wenqin发布了新的文献求助10
41秒前
郑嘻嘻完成签到,获得积分10
41秒前
付品聪发布了新的文献求助10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254133
求助须知:如何正确求助?哪些是违规求助? 2896458
关于积分的说明 8292745
捐赠科研通 2565360
什么是DOI,文献DOI怎么找? 1392956
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629856