CatBoost — An Ensemble Machine Learning Model for Prediction and Classification of Student Academic Performance

集成学习 机器学习 超参数 人工智能 计算机科学 教育数据挖掘 聚类分析 多样性(控制论) 学术机构 预测建模 集合预报 透明度(行为) 数据挖掘 计算机安全 图书馆学
作者
Abhisht Joshi,Pranay Saggar,Rajat Jain,Moolchand Sharma,Deepak Gupta,Ashish Khanna
出处
期刊:Advances in data science and adaptive analysis [World Scientific]
卷期号:13 (03n04) 被引量:17
标识
DOI:10.1142/s2424922x21410023
摘要

In every educational institution, predicting pupils’ performance is a vital responsibility. Due to this, a variety of data mining techniques, such as clustering, classification, and regression, are applied to anticipate the learner’s study behavior. By Machine Learning’s arrival, it has become vital to forecast students’ academic achievement, and this study attracts significant attention within the scientific community. In addition, the findings from this work have tremendous socio-economic consequences. One area of major research in the world of education today is educational data mining, which is the study of techniques to reveal hidden patterns in educational data. Data mining strategies succeed or fail to depend on the type and quality of the data that is being mined. Here, we provide a novel method that enhances the accuracy of prior student performance prediction by identifying and providing an explanation as to why it is rising. Using our robust machine learning ensemble models, we propose and evaluate a prediction model. The findings demonstrate that our CatBoost — an ensemble machine learning model — is superior to standard machine learning models with an accuracy of 92.27%. This new model was able to show itself to be dependable by the use of smote and hyperparameter optimization, which proved to be valuable methods and approaches. Additional features are significant as well. More critically, a unique method is utilized to increase model transparency. The SHAP values are a valuable part of the student performance prediction system, which we think should be integrated. For those educators tasked with using prediction models in education, we have found that there is a preference for models that offer both insightful insights and easy to understand predictions, as by utilizing our experiment the educator will be able to identify those students who are at early risk and inspire and encourage these students in a positive way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慧慧完成签到,获得积分10
刚刚
清如许发布了新的文献求助10
刚刚
刚刚
1秒前
可爱的函函应助yying采纳,获得10
1秒前
1秒前
加缪发布了新的文献求助10
1秒前
2秒前
Mzhao发布了新的文献求助10
2秒前
Kelly完成签到,获得积分10
2秒前
科研通AI6应助QQWQEQRQ采纳,获得10
3秒前
受伤翠容完成签到,获得积分10
3秒前
3秒前
烟花应助王多鱼采纳,获得10
3秒前
汉堡包应助王多鱼采纳,获得10
3秒前
平常的半凡完成签到,获得积分10
3秒前
汉堡包应助axl采纳,获得10
4秒前
顾矜应助鹤扰采纳,获得10
4秒前
在水一方应助欣慰枕头采纳,获得10
5秒前
量子星尘发布了新的文献求助30
5秒前
科研通AI5应助hchnb1234采纳,获得10
5秒前
6秒前
6秒前
bkagyin应助毕长富采纳,获得10
6秒前
打工狗发布了新的文献求助10
7秒前
小二郎应助小白采纳,获得10
7秒前
Beck完成签到,获得积分10
8秒前
star应助张先生采纳,获得10
8秒前
8秒前
丘比特应助monned采纳,获得10
8秒前
8秒前
宽宽完成签到,获得积分10
8秒前
哈哈哈发布了新的文献求助30
9秒前
9秒前
jjj完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
咻咻发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5026235
求助须知:如何正确求助?哪些是违规求助? 4262879
关于积分的说明 13287733
捐赠科研通 4070602
什么是DOI,文献DOI怎么找? 2226401
邀请新用户注册赠送积分活动 1234970
关于科研通互助平台的介绍 1158925