CatBoost — An Ensemble Machine Learning Model for Prediction and Classification of Student Academic Performance

集成学习 机器学习 超参数 人工智能 计算机科学 教育数据挖掘 聚类分析 多样性(控制论) 学术机构 预测建模 集合预报 透明度(行为) 数据挖掘 计算机安全 图书馆学
作者
Abhisht Joshi,Pranay Saggar,Rajat Jain,Moolchand Sharma,Deepak Gupta,Ashish Khanna
出处
期刊:Advances in data science and adaptive analysis [World Scientific]
卷期号:13 (03n04) 被引量:17
标识
DOI:10.1142/s2424922x21410023
摘要

In every educational institution, predicting pupils’ performance is a vital responsibility. Due to this, a variety of data mining techniques, such as clustering, classification, and regression, are applied to anticipate the learner’s study behavior. By Machine Learning’s arrival, it has become vital to forecast students’ academic achievement, and this study attracts significant attention within the scientific community. In addition, the findings from this work have tremendous socio-economic consequences. One area of major research in the world of education today is educational data mining, which is the study of techniques to reveal hidden patterns in educational data. Data mining strategies succeed or fail to depend on the type and quality of the data that is being mined. Here, we provide a novel method that enhances the accuracy of prior student performance prediction by identifying and providing an explanation as to why it is rising. Using our robust machine learning ensemble models, we propose and evaluate a prediction model. The findings demonstrate that our CatBoost — an ensemble machine learning model — is superior to standard machine learning models with an accuracy of 92.27%. This new model was able to show itself to be dependable by the use of smote and hyperparameter optimization, which proved to be valuable methods and approaches. Additional features are significant as well. More critically, a unique method is utilized to increase model transparency. The SHAP values are a valuable part of the student performance prediction system, which we think should be integrated. For those educators tasked with using prediction models in education, we have found that there is a preference for models that offer both insightful insights and easy to understand predictions, as by utilizing our experiment the educator will be able to identify those students who are at early risk and inspire and encourage these students in a positive way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨点发布了新的文献求助20
刚刚
明亮白山发布了新的文献求助10
刚刚
刚刚
刚刚
燕儿完成签到 ,获得积分10
1秒前
慕青应助堪曼凝采纳,获得10
2秒前
彩虹海完成签到,获得积分10
2秒前
3秒前
Wind发布了新的文献求助50
4秒前
4秒前
LJY发布了新的文献求助10
4秒前
Yry发布了新的文献求助10
5秒前
整齐棉花糖完成签到,获得积分10
5秒前
6秒前
6秒前
Vivian_Zhang应助keyantong采纳,获得10
6秒前
hanzhiyuxing发布了新的文献求助10
6秒前
风清扬发布了新的文献求助10
7秒前
mole发布了新的文献求助10
7秒前
7秒前
支舟发布了新的文献求助10
8秒前
华仔应助光亮的太阳采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
醉熏的红酒完成签到,获得积分10
12秒前
周欣玙发布了新的文献求助30
13秒前
13秒前
z_king_d_23发布了新的文献求助10
14秒前
自觉的雨安完成签到,获得积分20
14秒前
Orange应助myn1990采纳,获得10
14秒前
15秒前
15秒前
五花肉发布了新的文献求助10
15秒前
16秒前
yyy完成签到,获得积分10
16秒前
16秒前
CipherSage应助向浩采纳,获得10
17秒前
17秒前
且做等春树应助优娜采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632506
求助须知:如何正确求助?哪些是违规求助? 4727031
关于积分的说明 14982275
捐赠科研通 4790442
什么是DOI,文献DOI怎么找? 2558305
邀请新用户注册赠送积分活动 1518683
关于科研通互助平台的介绍 1479145