CatBoost — An Ensemble Machine Learning Model for Prediction and Classification of Student Academic Performance

集成学习 机器学习 超参数 人工智能 计算机科学 教育数据挖掘 聚类分析 多样性(控制论) 学术机构 预测建模 集合预报 透明度(行为) 数据挖掘 计算机安全 图书馆学
作者
Abhisht Joshi,Pranay Saggar,Rajat Jain,Moolchand Sharma,Deepak Gupta,Ashish Khanna
出处
期刊:Advances in data science and adaptive analysis [World Scientific]
卷期号:13 (03n04) 被引量:17
标识
DOI:10.1142/s2424922x21410023
摘要

In every educational institution, predicting pupils’ performance is a vital responsibility. Due to this, a variety of data mining techniques, such as clustering, classification, and regression, are applied to anticipate the learner’s study behavior. By Machine Learning’s arrival, it has become vital to forecast students’ academic achievement, and this study attracts significant attention within the scientific community. In addition, the findings from this work have tremendous socio-economic consequences. One area of major research in the world of education today is educational data mining, which is the study of techniques to reveal hidden patterns in educational data. Data mining strategies succeed or fail to depend on the type and quality of the data that is being mined. Here, we provide a novel method that enhances the accuracy of prior student performance prediction by identifying and providing an explanation as to why it is rising. Using our robust machine learning ensemble models, we propose and evaluate a prediction model. The findings demonstrate that our CatBoost — an ensemble machine learning model — is superior to standard machine learning models with an accuracy of 92.27%. This new model was able to show itself to be dependable by the use of smote and hyperparameter optimization, which proved to be valuable methods and approaches. Additional features are significant as well. More critically, a unique method is utilized to increase model transparency. The SHAP values are a valuable part of the student performance prediction system, which we think should be integrated. For those educators tasked with using prediction models in education, we have found that there is a preference for models that offer both insightful insights and easy to understand predictions, as by utilizing our experiment the educator will be able to identify those students who are at early risk and inspire and encourage these students in a positive way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助可爱香槟采纳,获得30
刚刚
罗dd发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Tushar完成签到,获得积分10
2秒前
NexusExplorer应助日光下采纳,获得10
2秒前
spc68应助LIUDEHUA采纳,获得10
4秒前
Lucas应助LIUDEHUA采纳,获得10
4秒前
英吉利25发布了新的文献求助10
4秒前
4秒前
三胖完成签到,获得积分10
4秒前
Dr Niu发布了新的文献求助10
5秒前
研友_VZG7GZ应助雨滴音乐采纳,获得10
5秒前
5秒前
引子完成签到,获得积分10
6秒前
三胖发布了新的文献求助10
7秒前
yagen发布了新的文献求助10
7秒前
ww完成签到,获得积分10
7秒前
7秒前
afan应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
科目三应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
Jeremy发布了新的文献求助10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
buno发布了新的文献求助10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
典雅涵瑶完成签到,获得积分10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582941
求助须知:如何正确求助?哪些是违规求助? 4666938
关于积分的说明 14764497
捐赠科研通 4608955
什么是DOI,文献DOI怎么找? 2528962
邀请新用户注册赠送积分活动 1498257
关于科研通互助平台的介绍 1466905