亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CatBoost — An Ensemble Machine Learning Model for Prediction and Classification of Student Academic Performance

集成学习 机器学习 超参数 人工智能 计算机科学 教育数据挖掘 聚类分析 多样性(控制论) 学术机构 预测建模 集合预报 透明度(行为) 数据挖掘 计算机安全 图书馆学
作者
Abhisht Joshi,Pranay Saggar,Rajat Jain,Moolchand Sharma,Deepak Gupta,Ashish Khanna
出处
期刊:Advances in data science and adaptive analysis [World Scientific]
卷期号:13 (03n04) 被引量:17
标识
DOI:10.1142/s2424922x21410023
摘要

In every educational institution, predicting pupils’ performance is a vital responsibility. Due to this, a variety of data mining techniques, such as clustering, classification, and regression, are applied to anticipate the learner’s study behavior. By Machine Learning’s arrival, it has become vital to forecast students’ academic achievement, and this study attracts significant attention within the scientific community. In addition, the findings from this work have tremendous socio-economic consequences. One area of major research in the world of education today is educational data mining, which is the study of techniques to reveal hidden patterns in educational data. Data mining strategies succeed or fail to depend on the type and quality of the data that is being mined. Here, we provide a novel method that enhances the accuracy of prior student performance prediction by identifying and providing an explanation as to why it is rising. Using our robust machine learning ensemble models, we propose and evaluate a prediction model. The findings demonstrate that our CatBoost — an ensemble machine learning model — is superior to standard machine learning models with an accuracy of 92.27%. This new model was able to show itself to be dependable by the use of smote and hyperparameter optimization, which proved to be valuable methods and approaches. Additional features are significant as well. More critically, a unique method is utilized to increase model transparency. The SHAP values are a valuable part of the student performance prediction system, which we think should be integrated. For those educators tasked with using prediction models in education, we have found that there is a preference for models that offer both insightful insights and easy to understand predictions, as by utilizing our experiment the educator will be able to identify those students who are at early risk and inspire and encourage these students in a positive way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asd1576562308完成签到 ,获得积分10
6秒前
BowieHuang应助达不溜搽采纳,获得10
33秒前
绿野仙踪完成签到 ,获得积分10
42秒前
50秒前
弃笔从文发布了新的文献求助10
54秒前
弃笔从文完成签到,获得积分20
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
天天快乐应助调皮千兰采纳,获得10
1分钟前
何为完成签到 ,获得积分0
1分钟前
1分钟前
调皮千兰发布了新的文献求助10
2分钟前
2分钟前
jinghong完成签到 ,获得积分10
2分钟前
彭于晏应助爱蹦跶的废物采纳,获得10
2分钟前
sunfield2014发布了新的文献求助10
2分钟前
2分钟前
BowieHuang应助调皮千兰采纳,获得10
2分钟前
2分钟前
完美世界应助雨晨采纳,获得10
2分钟前
2分钟前
Owen应助季刘杰采纳,获得10
3分钟前
3分钟前
季刘杰发布了新的文献求助10
3分钟前
ding应助调皮千兰采纳,获得10
3分钟前
小马甲应助渡己。采纳,获得10
3分钟前
3分钟前
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
渡己。发布了新的文献求助10
3分钟前
heisa完成签到,获得积分10
3分钟前
4分钟前
研友_VZG7GZ应助眉间尺采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561453
求助须知:如何正确求助?哪些是违规求助? 4646560
关于积分的说明 14678633
捐赠科研通 4587843
什么是DOI,文献DOI怎么找? 2517229
邀请新用户注册赠送积分活动 1490505
关于科研通互助平台的介绍 1461454