CatBoost — An Ensemble Machine Learning Model for Prediction and Classification of Student Academic Performance

集成学习 机器学习 超参数 人工智能 计算机科学 教育数据挖掘 聚类分析 多样性(控制论) 学术机构 预测建模 集合预报 透明度(行为) 数据挖掘 计算机安全 图书馆学
作者
Abhisht Joshi,Pranay Saggar,Rajat Jain,Moolchand Sharma,Deepak Gupta,Ashish Khanna
出处
期刊:Advances in data science and adaptive analysis [World Scientific]
卷期号:13 (03n04) 被引量:17
标识
DOI:10.1142/s2424922x21410023
摘要

In every educational institution, predicting pupils’ performance is a vital responsibility. Due to this, a variety of data mining techniques, such as clustering, classification, and regression, are applied to anticipate the learner’s study behavior. By Machine Learning’s arrival, it has become vital to forecast students’ academic achievement, and this study attracts significant attention within the scientific community. In addition, the findings from this work have tremendous socio-economic consequences. One area of major research in the world of education today is educational data mining, which is the study of techniques to reveal hidden patterns in educational data. Data mining strategies succeed or fail to depend on the type and quality of the data that is being mined. Here, we provide a novel method that enhances the accuracy of prior student performance prediction by identifying and providing an explanation as to why it is rising. Using our robust machine learning ensemble models, we propose and evaluate a prediction model. The findings demonstrate that our CatBoost — an ensemble machine learning model — is superior to standard machine learning models with an accuracy of 92.27%. This new model was able to show itself to be dependable by the use of smote and hyperparameter optimization, which proved to be valuable methods and approaches. Additional features are significant as well. More critically, a unique method is utilized to increase model transparency. The SHAP values are a valuable part of the student performance prediction system, which we think should be integrated. For those educators tasked with using prediction models in education, we have found that there is a preference for models that offer both insightful insights and easy to understand predictions, as by utilizing our experiment the educator will be able to identify those students who are at early risk and inspire and encourage these students in a positive way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣欣完成签到 ,获得积分10
刚刚
1秒前
如意冰棍发布了新的文献求助10
1秒前
嗷嗷发布了新的文献求助10
1秒前
震震应助爱躺平的老baby采纳,获得10
1秒前
1秒前
优雅含莲完成签到 ,获得积分10
2秒前
2秒前
2秒前
Bugatti完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
自由的白玉完成签到,获得积分20
4秒前
5秒前
hj木秀于林完成签到,获得积分10
5秒前
5秒前
无语的无声完成签到,获得积分10
5秒前
6秒前
稳重的宛丝完成签到 ,获得积分10
6秒前
雪白的灵竹完成签到,获得积分10
6秒前
Owen应助pwy采纳,获得10
7秒前
温柔的婷发布了新的文献求助30
8秒前
FashionBoy应助jiujiu采纳,获得30
9秒前
和谐竺发布了新的文献求助10
9秒前
dfsdf发布了新的文献求助10
9秒前
9秒前
背后如雪发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
12秒前
pluto应助小玲玲采纳,获得10
12秒前
13秒前
LL发布了新的文献求助10
14秒前
勤劳寒烟完成签到,获得积分10
14秒前
ldkl应助子虚一尘采纳,获得60
14秒前
树林红了完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403