反演(地质)
遥感
回归
随机森林
支持向量机
生物量(生态学)
环境科学
计算机科学
数据挖掘
统计
人工智能
地质学
数学
构造盆地
海洋学
古生物学
作者
Yongjie Ji,Peng Zeng,Wangfei Zhang,Lei Zhao
出处
期刊:International Geoscience and Remote Sensing Symposium
日期:2021-07-11
卷期号:36: 4540-4543
被引量:5
标识
DOI:10.1109/igarss47720.2021.9554712
摘要
Forest biomass plays an important role in restraining global warming and protecting ecosystem. With the development of ALOS SAR satellite and the improvement of its sensor performance, it plays a more and more important role in quantitative retrieval of forest biomass. In this paper, we used KNN-FIFS, KNN, SVR and Multiple Regression Models to invert the typical forest biomass of Genhe in Inner Mongolia and Yiliang in Yunnan based on ALOS1 PALSAR1 and ALOS2 PALSAR2. The results show that: 1) ALOS-2 PALSAR-2 has better inversion effect than ALOS-1 PALSAR-1;2) KNN-FIFS has better inversion accuracy than KNN, SVR and multiple regression function.
科研通智能强力驱动
Strongly Powered by AbleSci AI