Dual adaptive sampling and machine learning interatomic potentials for modeling materials with chemical bond hierarchy

计算机科学 格子(音乐) 声子 统计物理学 散射 材料科学 机器学习 物理 算法 凝聚态物理 量子力学 声学
作者
Hongliang Yang,Yifan Zhu,Erting Dong,Yabei Wu,Jiong Yang,Wenqing Zhang
出处
期刊:Physical review [American Physical Society]
卷期号:104 (9) 被引量:12
标识
DOI:10.1103/physrevb.104.094310
摘要

The development of reliable and flexible machine learning based interatomic potentials (ML-IPs) is becoming increasingly important in studying the physical properties of complex condensed matter systems. Besides the structure descriptor model for total energy decomposition, the trial-and-error approach used in the design of the training dataset makes the ML-IP hardly improvable and reliable for modeling materials with chemical bond hierarchy. In this work, a dual adaptive sampling (DAS) method with an on the fly ambiguity threshold was developed to automatically generate an effective training dataset covering a wide temperature range or a wide spectrum of thermodynamic conditions. The DAS method consists of an inner loop for exploring the local configuration space and an outer loop for covering a wide temperature range. We validated the developed DAS method by simulating thermal transport of complex materials. The simulation results show that even with a substantially small dataset, our approach not only accurately reproduces the energies and forces but also predicts reliably effective high-order force constants to at least fourth order. The lattice thermal conductivity and its temperature dependence were evaluated using the Green-Kubo simulations with ML-IP for $\mathrm{Co}{\mathrm{Sb}}_{3}$ with up to third-order phonon scattering, and those for ${\mathrm{Mg}}_{3}{\mathrm{Sb}}_{2}$ with up to fourth-order phonon scattering, and all show good agreements with experiments. Our work provides an avenue to effectively construct a training dataset for ML-IP of complex materials with chemical bond hierarchy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
爱听歌友易完成签到,获得积分10
2秒前
LHT完成签到,获得积分10
2秒前
bkagyin应助拔丝香芋采纳,获得10
2秒前
2秒前
824完成签到,获得积分10
3秒前
迷路盼易完成签到 ,获得积分10
3秒前
4秒前
黑羽发布了新的文献求助10
4秒前
yx_cheng发布了新的文献求助10
4秒前
5秒前
归零发布了新的文献求助10
5秒前
hq发布了新的文献求助10
5秒前
6秒前
7秒前
情怀应助Aqua采纳,获得10
7秒前
小鹅发布了新的文献求助10
8秒前
黄同学发布了新的文献求助10
8秒前
韦颖完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
Rondab应助天行马采纳,获得10
12秒前
范医生01完成签到,获得积分10
12秒前
李子衡发布了新的文献求助10
12秒前
2202发布了新的文献求助10
13秒前
13秒前
香蕉觅云应助祁纯采纳,获得10
14秒前
14秒前
14秒前
小郭小郭福气多多完成签到,获得积分10
15秒前
15秒前
zy发布了新的文献求助20
15秒前
迷路盼易发布了新的文献求助10
15秒前
Lucas应助1029zx采纳,获得10
16秒前
理论家完成签到,获得积分10
17秒前
甲羟基戊二酸单酰辅酶A完成签到 ,获得积分10
17秒前
长情博超发布了新的文献求助200
18秒前
平淡亦云发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952732
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11090865
捐赠科研通 3228782
什么是DOI,文献DOI怎么找? 1785114
邀请新用户注册赠送积分活动 869105
科研通“疑难数据库(出版商)”最低求助积分说明 801350