亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative Assessment of Motor Function by an End-Effector Upper Limb Rehabilitation Robot Based on Admittance Control

物理医学与康复 康复 运动功能 机器人 冲程(发动机) 物理疗法 心理学 医学 计算机科学 人工智能 工程类 机械工程
作者
Chao Qian,Wei Li,Tianyu Jia,Chong Liu,Ping-Ju Lin,Yiyong Yang,Linhong Ji
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (15): 6854-6854 被引量:8
标识
DOI:10.3390/app11156854
摘要

Various rehabilitation robots have been developed to assist the movement training of the upper limbs of stroke patients, among which some have been used to evaluate the motor recovery. However, how to understand the recovery of motor function from the quantitative assessment following robot-assisted rehabilitation training is still not clear. The objective of this study is to propose a quantitative assessment method of motor function based on the force and trajectory characteristics during robotic training to reflect motor functional recovery. To assist stroke patients who are not able to move voluntarily, an assistive training mode was developed for the robot-assisted rehabilitation system based on admittance control. Then, to validate the relationship between characteristic information and functional recovery, a clinical experiment was conducted, in which nine stroke patients and nine healthy subjects were recruited. The results showed a significant difference in movement range and movement smoothness during trajectory tracking tasks between stroke patients and healthy subjects. The two parameters above have a correlation with the Fugl-Meyer Assessment for Upper Extremity (FMU) of the involved patients. The multiple linear regression analysis showed FMU was positively correlated with parameters (R2=0.91,p<0.005). This finding indicated that the above-mentioned method can achieve quantitative assessment of motor function for stroke patients during robot-assisted rehabilitation training, which can contribute to promoting rehabilitation robots in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
茄子发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
23秒前
30秒前
独特的师完成签到,获得积分10
34秒前
完美世界应助世良采纳,获得10
36秒前
vince完成签到 ,获得积分10
37秒前
凌晨洋发布了新的文献求助10
47秒前
48秒前
科研通AI6应助沉静的迎荷采纳,获得10
54秒前
凌洛尘发布了新的文献求助10
55秒前
稳重的白筠完成签到 ,获得积分10
57秒前
59秒前
kei完成签到 ,获得积分10
59秒前
世良发布了新的文献求助10
1分钟前
凌晨洋完成签到,获得积分10
1分钟前
李爱国应助基根豹采纳,获得10
1分钟前
星辰大海应助Tuzi采纳,获得10
1分钟前
1分钟前
刻苦的小土豆完成签到 ,获得积分10
1分钟前
bless完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
凌洛尘完成签到,获得积分10
1分钟前
wtt完成签到,获得积分20
1分钟前
VDC发布了新的文献求助10
1分钟前
独特鸽子完成签到 ,获得积分10
1分钟前
狗狗完成签到 ,获得积分10
1分钟前
小二郎应助世良采纳,获得10
1分钟前
Werner完成签到 ,获得积分10
1分钟前
SciGPT应助outlast采纳,获得10
1分钟前
小情绪完成签到 ,获得积分10
1分钟前
田様应助激昂的小凡采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650677
求助须知:如何正确求助?哪些是违规求助? 4781288
关于积分的说明 15052487
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572338
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487341