Deep Learning Based Identification and Segmentation of Lung Tumors on Computed Tomography Images

医学 分割 深度学习 卷积神经网络 人工智能 放射科 肺癌 原发性肿瘤 放射肿瘤学 试验装置 放射治疗 高分辨率计算机断层扫描 计算机断层摄影术 核医学 癌症 转移 病理 计算机科学 内科学
作者
Mehr Kashyap,Neil Panjwani,Mohammad Asa Hasan,Charles Huang,Karl Bush,Peng Dong,Sandra S. Zaky,A. H. Chin,Lucas K. Vitzthum,Billy W. Loo,Maximilian Diehn,Xing Liu,Michael F. Gensheimer
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:111 (3): e92-e93 被引量:1
标识
DOI:10.1016/j.ijrobp.2021.07.476
摘要

Rapid and accurate estimation of tumor burden in biomedical images is essential for precisely monitoring cancer progression and assessing therapeutic response. The ability to detect and segment tumors using an automated approach is a key part of this task. Despite recent advances from deep learning, lung tumor delineation remains challenging, particularly when the tumor bounding box is not provided to the model. We hypothesized that clinical radiation oncology contours could supply a large enough dataset of 3D tumor segmentations to enable more accurate models. We developed and validated a deep learning-based model to identify and segment primary and metastatic lung tumors on computed tomography (CT) images.We curated a dataset consisting of CT images and clinical segmentations of 1,916 lung tumors in 1,504 patients who received radiation treatment for one or more primary or metastatic lung tumors. Segmentation quality was independently verified by a radiation oncologist using a custom web application. This dataset was used to train two 3D U-Net convolutional neural networks with varying model properties: one using high-resolution and small input volumes, and one using low-resolution and large input volumes. Models were ensembled together during validation. Performance was evaluated using an external held-out test set of CT images and segmentations from 59 patients with a single primary or metastatic lung tumor, treated at a separate clinical site. This test set consisted of 50 primary lung cancers and 9 metastases. To benchmark model performance against physicians, the test set was also contoured by two additional radiation oncologists.Median tumor volume in the external test set was 80.48 cubic centimeters (interquartile range [IQR]: 14.40 to 177.65). The segmentations generated by the ensembled model produced a mean Dice coefficient of 0.62 (IQR: 0.47 to 0.85) on the test set. The sensitivity for detecting a tumor, as defined by correctly predicting at least one voxel within a ground truth tumor, was 93.2%, and the Dice coefficient for the scans with correctly identified lesions was 0.67 (IQR: 0.53 to 0.85). In comparison, the mean interobserver Dice coefficient for the three physicians on the test set was 0.76 (IQR: 0.70 to 0.84). We observed strong correlation between physician-determined tumor size and model-predicted tumor size (Pearson correlation, r = 0.69, P < 0.0001).An end-to-end deep learning-based model was able to identify and segment lung tumors in a completely automated fashion, with near-expert level performance. Such models could soon be useful for clinical contouring and automatic quantification of tumor burden.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dophin发布了新的文献求助10
1秒前
peach完成签到,获得积分10
1秒前
靓丽的采白完成签到,获得积分10
1秒前
songf11完成签到,获得积分10
1秒前
小石发布了新的文献求助10
2秒前
2秒前
山羊穿毛衣完成签到,获得积分0
2秒前
Young完成签到,获得积分10
2秒前
点金石发布了新的文献求助10
3秒前
3秒前
怕孤单的又柔应助寒冷诗霜采纳,获得100
3秒前
Lucas应助正直亦旋采纳,获得10
4秒前
学术laji完成签到 ,获得积分10
4秒前
正直的小猫咪完成签到,获得积分10
4秒前
dui完成签到,获得积分10
5秒前
愉快的哈密瓜完成签到,获得积分10
5秒前
二十八完成签到 ,获得积分10
5秒前
jingwei72完成签到,获得积分10
5秒前
李健完成签到 ,获得积分10
6秒前
XYS完成签到,获得积分10
6秒前
科目三应助天天向上采纳,获得10
6秒前
在云里爱与歌完成签到,获得积分10
6秒前
6秒前
Andy完成签到,获得积分10
7秒前
7秒前
z'x发布了新的文献求助10
7秒前
zhangpeng完成签到,获得积分10
7秒前
szbllc完成签到,获得积分10
8秒前
江蓠完成签到,获得积分10
8秒前
友00000完成签到 ,获得积分10
8秒前
阳光的易真完成签到,获得积分10
8秒前
聪慧的石头完成签到,获得积分10
9秒前
dophin完成签到,获得积分10
9秒前
坚强亦丝完成签到,获得积分0
9秒前
eric完成签到 ,获得积分10
10秒前
FD完成签到,获得积分10
11秒前
千流完成签到,获得积分10
11秒前
骆如松应助enzo采纳,获得10
12秒前
自然完成签到,获得积分10
12秒前
天天向上完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510997
求助须知:如何正确求助?哪些是违规求助? 3093756
关于积分的说明 9218930
捐赠科研通 2788213
什么是DOI,文献DOI怎么找? 1530059
邀请新用户注册赠送积分活动 710736
科研通“疑难数据库(出版商)”最低求助积分说明 706329