A Deep Learning Based Framework for Diagnosing Multiple Skin Diseases in a Clinical Environment

脂溢性角化病 深度学习 人工智能 计算机科学 皮肤病科 皮肤纤维瘤 模式识别(心理学) 医学 分割 病理 免疫组织化学
作者
Chenyu Zhu,Yukun Wang,Haipeng Chen,Kunlun Gao,Chang Shu,Juncheng Wang,Lifeng Yan,Yiguang Yang,Fengying Xie,Jie Liu
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:8 被引量:50
标识
DOI:10.3389/fmed.2021.626369
摘要

Background: Numerous studies have attempted to apply artificial intelligence (AI) in the dermatological field, mainly on the classification and segmentation of various dermatoses. However, researches under real clinical settings are scarce. Objectives: This study was aimed to construct a novel framework based on deep learning trained by a dataset that represented the real clinical environment in a tertiary class hospital in China, for better adaptation of the AI application in clinical practice among Asian patients. Methods: Our dataset was composed of 13,603 dermatologist-labeled dermoscopic images, containing 14 categories of diseases, namely lichen planus (LP), rosacea (Rosa), viral warts (VW), acne vulgaris (AV), keloid and hypertrophic scar (KAHS), eczema and dermatitis (EAD), dermatofibroma (DF), seborrheic dermatitis (SD), seborrheic keratosis (SK), melanocytic nevus (MN), hemangioma (Hem), psoriasis (Pso), port wine stain (PWS), and basal cell carcinoma (BCC). In this study, we applied Google's EfficientNet-b4 with pre-trained weights on ImageNet as the backbone of our CNN architecture. The final fully-connected classification layer was replaced with 14 output neurons. We added seven auxiliary classifiers to each of the intermediate layer groups. The modified model was retrained with our dataset and implemented using Pytorch. We constructed saliency maps to visualize our network's attention area of input images for its prediction. To explore the visual characteristics of different clinical classes, we also examined the internal image features learned by the proposed framework using t-SNE (t-distributed Stochastic Neighbor Embedding). Results: Test results showed that the proposed framework achieved a high level of classification performance with an overall accuracy of 0.948, a sensitivity of 0.934 and a specificity of 0.950. We also compared the performance of our algorithm with three most widely used CNN models which showed our model outperformed existing models with the highest area under curve (AUC) of 0.985. We further compared this model with 280 board-certificated dermatologists, and results showed a comparable performance level in an 8-class diagnostic task. Conclusions: The proposed framework retrained by the dataset that represented the real clinical environment in our department could accurately classify most common dermatoses that we encountered during outpatient practice including infectious and inflammatory dermatoses, benign and malignant cutaneous tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liudongling完成签到 ,获得积分10
1秒前
2秒前
lzd完成签到,获得积分10
3秒前
mei发布了新的文献求助10
4秒前
lll422完成签到,获得积分10
5秒前
5秒前
安静幻枫应助akiyy采纳,获得20
5秒前
6秒前
小李完成签到,获得积分10
7秒前
深情安青应助巧克力coco采纳,获得10
7秒前
FashionBoy应助玉山小霸王采纳,获得10
7秒前
10秒前
YYY应助小张z采纳,获得10
10秒前
11秒前
Laus发布了新的文献求助10
11秒前
13秒前
脑洞疼应助tjyangbo采纳,获得10
13秒前
16秒前
领导范儿应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
17秒前
琉璃非离应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
惊鹊完成签到,获得积分10
18秒前
shizhan完成签到,获得积分20
18秒前
科研通AI5应助mei采纳,获得10
18秒前
18秒前
不会失忆完成签到,获得积分10
20秒前
调皮的萃发布了新的文献求助10
21秒前
22秒前
24秒前
传奇3应助ss采纳,获得10
25秒前
平常的可乐完成签到 ,获得积分10
25秒前
yangz完成签到,获得积分10
28秒前
称心凡霜完成签到,获得积分10
29秒前
小学生的练习簿完成签到,获得积分10
30秒前
高分求助中
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
机器学习与人工智能:从理论到实践 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3706097
求助须知:如何正确求助?哪些是违规求助? 3255274
关于积分的说明 9893949
捐赠科研通 2967616
什么是DOI,文献DOI怎么找? 1627366
邀请新用户注册赠送积分活动 771471
科研通“疑难数据库(出版商)”最低求助积分说明 743382