A Deep Learning Based Framework for Diagnosing Multiple Skin Diseases in a Clinical Environment

脂溢性角化病 深度学习 人工智能 计算机科学 皮肤病科 皮肤纤维瘤 模式识别(心理学) 医学 分割 病理 免疫组织化学
作者
Chenyu Zhu,Yukun Wang,Haipeng Chen,Kunlun Gao,Chang Shu,Juncheng Wang,Lifeng Yan,Yiguang Yang,Fengying Xie,Jie Liu
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:8 被引量:50
标识
DOI:10.3389/fmed.2021.626369
摘要

Background: Numerous studies have attempted to apply artificial intelligence (AI) in the dermatological field, mainly on the classification and segmentation of various dermatoses. However, researches under real clinical settings are scarce. Objectives: This study was aimed to construct a novel framework based on deep learning trained by a dataset that represented the real clinical environment in a tertiary class hospital in China, for better adaptation of the AI application in clinical practice among Asian patients. Methods: Our dataset was composed of 13,603 dermatologist-labeled dermoscopic images, containing 14 categories of diseases, namely lichen planus (LP), rosacea (Rosa), viral warts (VW), acne vulgaris (AV), keloid and hypertrophic scar (KAHS), eczema and dermatitis (EAD), dermatofibroma (DF), seborrheic dermatitis (SD), seborrheic keratosis (SK), melanocytic nevus (MN), hemangioma (Hem), psoriasis (Pso), port wine stain (PWS), and basal cell carcinoma (BCC). In this study, we applied Google's EfficientNet-b4 with pre-trained weights on ImageNet as the backbone of our CNN architecture. The final fully-connected classification layer was replaced with 14 output neurons. We added seven auxiliary classifiers to each of the intermediate layer groups. The modified model was retrained with our dataset and implemented using Pytorch. We constructed saliency maps to visualize our network's attention area of input images for its prediction. To explore the visual characteristics of different clinical classes, we also examined the internal image features learned by the proposed framework using t-SNE (t-distributed Stochastic Neighbor Embedding). Results: Test results showed that the proposed framework achieved a high level of classification performance with an overall accuracy of 0.948, a sensitivity of 0.934 and a specificity of 0.950. We also compared the performance of our algorithm with three most widely used CNN models which showed our model outperformed existing models with the highest area under curve (AUC) of 0.985. We further compared this model with 280 board-certificated dermatologists, and results showed a comparable performance level in an 8-class diagnostic task. Conclusions: The proposed framework retrained by the dataset that represented the real clinical environment in our department could accurately classify most common dermatoses that we encountered during outpatient practice including infectious and inflammatory dermatoses, benign and malignant cutaneous tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leibaozun完成签到 ,获得积分10
5秒前
whitepiece完成签到,获得积分10
8秒前
陈昇完成签到 ,获得积分10
11秒前
wo_qq111完成签到 ,获得积分10
12秒前
康zai完成签到 ,获得积分10
14秒前
带头大哥应助hzs采纳,获得200
18秒前
科研混子完成签到 ,获得积分10
25秒前
26秒前
Leo完成签到 ,获得积分10
27秒前
哈哈哈哈完成签到 ,获得积分10
31秒前
HLT完成签到 ,获得积分10
31秒前
洁净的静芙完成签到 ,获得积分10
31秒前
sheila完成签到 ,获得积分10
49秒前
自觉的万言完成签到 ,获得积分10
1分钟前
柒月完成签到 ,获得积分10
1分钟前
YifanWang应助一个小胖子采纳,获得10
1分钟前
chenying完成签到 ,获得积分0
1分钟前
梧桐之泪完成签到 ,获得积分10
1分钟前
鹰隼游完成签到 ,获得积分10
1分钟前
janer完成签到 ,获得积分10
1分钟前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
1分钟前
传统的松鼠完成签到 ,获得积分10
1分钟前
特别圆的正方形完成签到 ,获得积分10
1分钟前
摇不滚摇滚完成签到 ,获得积分10
1分钟前
掏粪男孩完成签到 ,获得积分10
1分钟前
阳炎完成签到,获得积分10
1分钟前
YifanWang应助一个小胖子采纳,获得10
1分钟前
hzs完成签到,获得积分10
1分钟前
小小果妈完成签到 ,获得积分10
1分钟前
YifanWang应助一个小胖子采纳,获得10
1分钟前
yii完成签到 ,获得积分10
1分钟前
viahit完成签到 ,获得积分10
1分钟前
1分钟前
子月之路发布了新的文献求助10
1分钟前
zhangguo完成签到 ,获得积分10
1分钟前
拼搏山槐完成签到 ,获得积分10
1分钟前
YifanWang应助一个小胖子采纳,获得10
1分钟前
Shuhe_Gong完成签到 ,获得积分10
2分钟前
2分钟前
传奇3应助vermouth采纳,获得10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126186
求助须知:如何正确求助?哪些是违规求助? 2776364
关于积分的说明 7729904
捐赠科研通 2431800
什么是DOI,文献DOI怎么找? 1292298
科研通“疑难数据库(出版商)”最低求助积分说明 622696
版权声明 600430