已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film

氢化酶 氧化还原 过电位 催化作用 电子转移 阳极 电催化剂 纳米技术 化学 分解水 阴极 组合化学 化学工程 材料科学 无机化学 光化学 电化学 电极 有机化学 物理化学 工程类 光催化
作者
Steffen Hardt,Stefanie Stapf,Dawit T. Filmon,James A. Birrell,Olaf Rüdiger,Vincent Fourmond,Christophe Léger,Nicolas Plumeré
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:4 (3): 251-258 被引量:74
标识
DOI:10.1038/s41929-021-00586-1
摘要

Efficient electrocatalytic energy conversion requires devices to function reversibly, that is, to deliver a substantial current at a minimal overpotential. Redox-active films can effectively embed and stabilize molecular electrocatalysts, but mediated electron transfer through the film typically makes the catalytic response irreversible. Here we describe a redox-active film for bidirectional (oxidation or reduction) and reversible hydrogen conversion, which consists of [FeFe] hydrogenase embedded in a low-potential, 2,2′-viologen-modified hydrogel. When this catalytic film served as the anode material in a H2/O2 biofuel cell, an open circuit voltage of 1.16 V was obtained—a benchmark value near the thermodynamic limit. The same film also acted as a highly energy efficient cathode material for H2 evolution. We explained the catalytic properties using a kinetic model, which shows that reversibility can be achieved even though intermolecular electron transfer is slower than catalysis. This understanding of reversibility simplifies the design principles of highly efficient and stable bioelectrocatalytic films, advancing their implementation in energy conversion. Integration of biocatalysts into redox films has systematically led to a loss of their intrinsic reversibility. Now, a specially designed redox hydrogel preserves the reversibility of a [FeFe] hydrogenase and the importance of this feature for energy conversion applications is demonstrated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助Lebpom采纳,获得10
刚刚
思源应助悦雨采纳,获得50
4秒前
Ambi发布了新的文献求助30
4秒前
呵呵哒发布了新的文献求助10
6秒前
haiboe完成签到,获得积分10
7秒前
baymin完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
11秒前
11秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
Moonpie应助科研通管家采纳,获得10
12秒前
Moonpie应助科研通管家采纳,获得10
12秒前
whoknowsname完成签到,获得积分10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
MchemG应助科研通管家采纳,获得10
12秒前
Moonpie应助科研通管家采纳,获得10
12秒前
Tenacity完成签到,获得积分10
12秒前
Moonpie应助科研通管家采纳,获得10
12秒前
Moonpie应助科研通管家采纳,获得10
12秒前
Moonpie应助科研通管家采纳,获得10
12秒前
轨迹应助科研通管家采纳,获得30
12秒前
Moonpie应助科研通管家采纳,获得10
12秒前
MchemG应助科研通管家采纳,获得10
12秒前
Moonpie应助科研通管家采纳,获得10
12秒前
霸气师完成签到 ,获得积分10
13秒前
13秒前
许小六完成签到 ,获得积分10
15秒前
怪胎完成签到,获得积分10
15秒前
言辞完成签到,获得积分10
16秒前
luan完成签到 ,获得积分10
16秒前
yangxin完成签到,获得积分10
19秒前
20秒前
luckydog完成签到 ,获得积分10
22秒前
爆米花应助可靠的寒风采纳,获得10
23秒前
852应助mumu采纳,获得10
23秒前
求文献发布了新的文献求助10
24秒前
yangxin发布了新的文献求助10
24秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746213
求助须知:如何正确求助?哪些是违规求助? 5431727
关于积分的说明 15354945
捐赠科研通 4886145
什么是DOI,文献DOI怎么找? 2627072
邀请新用户注册赠送积分活动 1575586
关于科研通互助平台的介绍 1532262