Game Combined Multi-Agent Reinforcement Learning Approach for UAV Assisted Offloading

计算机科学 强化学习 避障 潜在博弈 分布式计算 架空(工程) 云计算 高效能源利用 避碰 服务器 趋同(经济学) 移动机器人 实时计算 纳什均衡 机器人 数学优化 计算机网络 人工智能 工程类 碰撞 操作系统 经济 电气工程 经济增长 计算机安全 数学
作者
Ang Gao,Qi Wang,Wei Liang,Zhiguo Ding
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (12): 12888-12901 被引量:45
标识
DOI:10.1109/tvt.2021.3121281
摘要

Air ground integrated mobile cloud computing (MCC) provides unmanned aerial vehicles (UAVs) the capability to act as an aerial relay with more flexibility and resilience. In the cloud computing architecture, the data generated by ground users (GUs) can be offloaded to the remote server for fast processing. However, the heterogeneity of mobile tasks makes the data size distributed among GUs unbalanced. Besides, the energy efficiency of UAVs movement should be carefully considered for sustainable flight and obstacle avoidance. In general, such a joint trajectory issue can hardly be formulated as a convex optimization in unpredictable and dynamic environments. This paper proposes a potential game combined multi-agent deep deterministic policy gradient (MADDPG) approach to optimize multiple UAVs' trajectory with the consideration of GUs' offloading delay, energy efficiency as well as obstacle avoidance system. In specific, we first model the issue as a mixed integer non-linear problem (MINP), in which the service assignment between multi-user and multi-UAV is solved by potential game. The convergence to a Nash Equilibrium (NE) can be achieved by distributive service assignment update with infinite iteration. Then, we optimize the trajectory with obstacle avoidance at each UAV by MADDPG approach, which has a great advantage of centralized-training and decentralized-execution to reduce the global synchronized communication overhead. UAVs movement can be optimized in continuity rather than other deep reinforcement learning (DRL) approaches generating discrete simple actions. Experiments demonstrate the proposed game-combined learning algorithm can minimize the offloading delay, enhance UAVs’ energy efficiency and avoid the obstacles at the same time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wmm完成签到,获得积分10
刚刚
Mu丶tou完成签到,获得积分10
刚刚
谦让水香完成签到,获得积分10
1秒前
1秒前
朴实的念双完成签到,获得积分10
1秒前
1秒前
安详的自中完成签到,获得积分10
1秒前
连冷安完成签到,获得积分10
1秒前
577发布了新的文献求助10
2秒前
高分子完成签到,获得积分10
4秒前
鲤跃完成签到,获得积分10
4秒前
livra1058完成签到,获得积分10
5秒前
迷路的沛芹完成签到 ,获得积分0
6秒前
6秒前
ggxiang1989完成签到,获得积分10
6秒前
666发布了新的文献求助10
7秒前
Freelover完成签到,获得积分10
7秒前
雪白幻巧完成签到,获得积分10
7秒前
轻松白开水完成签到 ,获得积分10
7秒前
我现在弱得可怕完成签到,获得积分10
8秒前
小章鱼完成签到,获得积分10
8秒前
9秒前
幸福妙柏完成签到 ,获得积分10
10秒前
奉雨眠完成签到,获得积分10
10秒前
nkuhao完成签到,获得积分10
10秒前
前行的灿完成签到,获得积分10
11秒前
dscvigykyob完成签到,获得积分10
11秒前
张正完成签到,获得积分10
11秒前
brick2024完成签到,获得积分10
11秒前
多情的易绿完成签到,获得积分10
11秒前
美含完成签到,获得积分10
11秒前
怡然的复天完成签到,获得积分10
11秒前
12秒前
Jason完成签到,获得积分10
12秒前
赵念婉完成签到,获得积分10
13秒前
空城完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735