Game Combined Multi-Agent Reinforcement Learning Approach for UAV Assisted Offloading

计算机科学 强化学习 避障 潜在博弈 分布式计算 架空(工程) 云计算 高效能源利用 避碰 服务器 趋同(经济学) 移动机器人 实时计算 纳什均衡 机器人 数学优化 计算机网络 人工智能 工程类 碰撞 操作系统 经济 电气工程 经济增长 计算机安全 数学
作者
Ang Gao,Qi Wang,Wei Liang,Zhiguo Ding
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (12): 12888-12901 被引量:45
标识
DOI:10.1109/tvt.2021.3121281
摘要

Air ground integrated mobile cloud computing (MCC) provides unmanned aerial vehicles (UAVs) the capability to act as an aerial relay with more flexibility and resilience. In the cloud computing architecture, the data generated by ground users (GUs) can be offloaded to the remote server for fast processing. However, the heterogeneity of mobile tasks makes the data size distributed among GUs unbalanced. Besides, the energy efficiency of UAVs movement should be carefully considered for sustainable flight and obstacle avoidance. In general, such a joint trajectory issue can hardly be formulated as a convex optimization in unpredictable and dynamic environments. This paper proposes a potential game combined multi-agent deep deterministic policy gradient (MADDPG) approach to optimize multiple UAVs' trajectory with the consideration of GUs' offloading delay, energy efficiency as well as obstacle avoidance system. In specific, we first model the issue as a mixed integer non-linear problem (MINP), in which the service assignment between multi-user and multi-UAV is solved by potential game. The convergence to a Nash Equilibrium (NE) can be achieved by distributive service assignment update with infinite iteration. Then, we optimize the trajectory with obstacle avoidance at each UAV by MADDPG approach, which has a great advantage of centralized-training and decentralized-execution to reduce the global synchronized communication overhead. UAVs movement can be optimized in continuity rather than other deep reinforcement learning (DRL) approaches generating discrete simple actions. Experiments demonstrate the proposed game-combined learning algorithm can minimize the offloading delay, enhance UAVs’ energy efficiency and avoid the obstacles at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
PFD000发布了新的文献求助10
1秒前
ding应助xuaotian采纳,获得10
1秒前
111发布了新的文献求助10
1秒前
1秒前
随缘完成签到,获得积分10
3秒前
3秒前
刘旺完成签到,获得积分10
3秒前
july7292完成签到 ,获得积分10
3秒前
王蝶完成签到 ,获得积分10
4秒前
FrankW完成签到,获得积分10
5秒前
所所应助百里一一采纳,获得10
5秒前
6秒前
7秒前
HalfGumps完成签到,获得积分10
7秒前
阳光彩虹完成签到,获得积分20
7秒前
8秒前
典雅的幼菱完成签到 ,获得积分20
9秒前
9秒前
依依818发布了新的文献求助10
9秒前
卢克阿玛斯宾完成签到,获得积分10
9秒前
星辰大海应助往前冲采纳,获得10
10秒前
10秒前
海东来应助sass采纳,获得30
10秒前
Luna完成签到,获得积分10
10秒前
sui完成签到,获得积分10
10秒前
11秒前
youxueting给youxueting的求助进行了留言
11秒前
满泉伟发布了新的文献求助10
12秒前
12秒前
流星飞完成签到,获得积分10
13秒前
喻紫寒发布了新的文献求助10
15秒前
IceyMY完成签到,获得积分10
15秒前
常常思念发布了新的文献求助10
16秒前
三乐发布了新的文献求助30
16秒前
爆米花应助immm采纳,获得20
17秒前
xuaotian发布了新的文献求助10
17秒前
当当发布了新的文献求助10
18秒前
哟哟哟完成签到,获得积分10
18秒前
111完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011082
求助须知:如何正确求助?哪些是违规求助? 3550727
关于积分的说明 11306344
捐赠科研通 3284997
什么是DOI,文献DOI怎么找? 1810947
邀请新用户注册赠送积分活动 886635
科研通“疑难数据库(出版商)”最低求助积分说明 811563