已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Game Combined Multi-Agent Reinforcement Learning Approach for UAV Assisted Offloading

计算机科学 强化学习 避障 潜在博弈 分布式计算 架空(工程) 云计算 高效能源利用 避碰 服务器 趋同(经济学) 移动机器人 实时计算 纳什均衡 机器人 数学优化 计算机网络 人工智能 工程类 碰撞 操作系统 经济 电气工程 经济增长 计算机安全 数学
作者
Ang Gao,Qi Wang,Wei Liang,Zhiguo Ding
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (12): 12888-12901 被引量:45
标识
DOI:10.1109/tvt.2021.3121281
摘要

Air ground integrated mobile cloud computing (MCC) provides unmanned aerial vehicles (UAVs) the capability to act as an aerial relay with more flexibility and resilience. In the cloud computing architecture, the data generated by ground users (GUs) can be offloaded to the remote server for fast processing. However, the heterogeneity of mobile tasks makes the data size distributed among GUs unbalanced. Besides, the energy efficiency of UAVs movement should be carefully considered for sustainable flight and obstacle avoidance. In general, such a joint trajectory issue can hardly be formulated as a convex optimization in unpredictable and dynamic environments. This paper proposes a potential game combined multi-agent deep deterministic policy gradient (MADDPG) approach to optimize multiple UAVs' trajectory with the consideration of GUs' offloading delay, energy efficiency as well as obstacle avoidance system. In specific, we first model the issue as a mixed integer non-linear problem (MINP), in which the service assignment between multi-user and multi-UAV is solved by potential game. The convergence to a Nash Equilibrium (NE) can be achieved by distributive service assignment update with infinite iteration. Then, we optimize the trajectory with obstacle avoidance at each UAV by MADDPG approach, which has a great advantage of centralized-training and decentralized-execution to reduce the global synchronized communication overhead. UAVs movement can be optimized in continuity rather than other deep reinforcement learning (DRL) approaches generating discrete simple actions. Experiments demonstrate the proposed game-combined learning algorithm can minimize the offloading delay, enhance UAVs’ energy efficiency and avoid the obstacles at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TYM发布了新的文献求助10
1秒前
1秒前
金www完成签到 ,获得积分10
2秒前
626完成签到,获得积分20
2秒前
zzz33完成签到,获得积分10
4秒前
FashionBoy应助公子李采纳,获得10
5秒前
Jasper应助小小旭呀采纳,获得10
7秒前
Mark完成签到 ,获得积分10
8秒前
RSHL完成签到 ,获得积分10
14秒前
14秒前
完美世界应助萤照夜清采纳,获得10
16秒前
袁钰琳完成签到 ,获得积分10
19秒前
小小旭呀发布了新的文献求助10
19秒前
丘比特应助zzz33采纳,获得10
24秒前
26秒前
27秒前
28秒前
dwx发布了新的文献求助10
31秒前
共享精神应助小小旭呀采纳,获得10
31秒前
顾矜应助gslsx409采纳,获得30
33秒前
科研通AI2S应助LU采纳,获得10
34秒前
lwm不想看文献完成签到 ,获得积分10
36秒前
贪玩的谷芹完成签到 ,获得积分10
38秒前
dwx完成签到,获得积分20
39秒前
JF123_完成签到 ,获得积分10
43秒前
LU完成签到 ,获得积分10
45秒前
46秒前
外向春天完成签到 ,获得积分10
47秒前
47秒前
舟夏完成签到 ,获得积分10
48秒前
48秒前
51秒前
zzz完成签到 ,获得积分10
52秒前
53秒前
54秒前
爱静静应助科研通管家采纳,获得30
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
畅快幻柏发布了新的文献求助10
56秒前
pangboo完成签到 ,获得积分10
56秒前
58秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
FDA-2: Frenchay Dysarthria Assessment 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3215531
求助须知:如何正确求助?哪些是违规求助? 2864197
关于积分的说明 8141683
捐赠科研通 2530406
什么是DOI,文献DOI怎么找? 1364647
科研通“疑难数据库(出版商)”最低求助积分说明 644219
邀请新用户注册赠送积分活动 616803