MRI radiomic features-based machine learning approach to classify ischemic stroke onset time

神经组阅片室 人工智能 医学 冲程(发动机) 二元分类 计算机科学 模式识别(心理学) 神经学 深度学习 支持向量机 接收机工作特性 机器学习 放射科 机械工程 精神科 工程类
作者
Yiqun Zhang,Ao-Fei Liu,Fengyuan Man,Ying‐Ying Zhang,Chen Li,Yun-e Liu,Ji Zhou,Aiping Zhang,Yang-Dong Zhang,Jin Lv,Weijian Jiang
出处
期刊:Journal of Neurology [Springer Science+Business Media]
卷期号:269 (1): 350-360 被引量:27
标识
DOI:10.1007/s00415-021-10638-y
摘要

We aimed to investigate the ability of MRI radiomics features-based machine learning (ML) models to classify the time since stroke onset (TSS), which could aid in stroke assessment and treatment options. This study involved 84 patients with acute ischemic stroke due to anterior circulation artery occlusion (51 in the training cohort and 33 in the independent test cohort). Region of infarct segmentation was manually outlined by 3D-slicer software. Image processing including registration, normalization and radiomics features calculation were done in R (version 3.6.1). A total of 4312 radiomic features from each image sequence were captured and used in six ML models to estimate stroke onset time for binary classification (≤ 4.5 h). Receiver-operating characteristic curve (ROC) and other parameters were calculated to evaluate the performance of the models in both training and test cohorts. Twelve radiomics and six clinic features were selected to construct the ML models for TSS classification. The deep learning model-based DWI/ADC radiomic features performed the best for binary TSS classification in the independent test cohort, with an AUC of 0.754, accuracy of 0.788, sensitivity of 0.952, specificity of 0.500, positive predictive value of 0.769, and negative predictive value of 0.857, respectively. Furthermore, adding clinical information did not improve the performance of the DWI/ADC-based deep learning model. The TSS prediction models can be visited at: http://123.57.65.199:3838/deeptss/ . A unique deep learning model based on DWI/ADC radiomic features was constructed for TSS classification, which could aid in decision making for thrombolysis in patients with unknown stroke onset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢欢发布了新的文献求助20
刚刚
小白完成签到,获得积分10
1秒前
祖冰绿发布了新的文献求助10
1秒前
AHU完成签到,获得积分10
1秒前
2秒前
zyq发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
周爱李发布了新的文献求助10
4秒前
gaogaogao发布了新的文献求助10
4秒前
5秒前
bkagyin应助大宝贝爱学习采纳,获得10
5秒前
轻松狗应助负责的方盒采纳,获得10
5秒前
猫独秀完成签到,获得积分10
6秒前
6秒前
6秒前
happy完成签到,获得积分20
7秒前
JuJu发布了新的文献求助10
7秒前
充电宝应助dll采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
11秒前
牛马人生完成签到,获得积分10
12秒前
挚友完成签到 ,获得积分10
12秒前
12秒前
轨道交通振动与噪声小白完成签到,获得积分10
13秒前
13秒前
Akim应助周爱李采纳,获得10
13秒前
陌路发布了新的文献求助10
14秒前
田田田完成签到,获得积分10
14秒前
星辰大海应助JuJu采纳,获得10
14秒前
小杨发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
小马甲应助nulll采纳,获得10
14秒前
可爱的函函应助123456采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836