Radiomics analysis allows for precise prediction of silent corticotroph adenoma among non-functioning pituitary adenomas

医学 神经组阅片室 无线电技术 垂体腺瘤 放射科 腺瘤 特征(语言学) 人工智能 机器学习 内科学 神经学 计算机科学 语言学 精神科 哲学
作者
Wenting Rui,Nidan Qiao,Yue Wu,Yong Zhang,Ababikere Aili,Zhaoyun Zhang,Hongying Ye,Li Wang,Yao Zhao,Zhenwei Yao
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 1570-1578 被引量:20
标识
DOI:10.1007/s00330-021-08361-3
摘要

To predict silent corticotroph adenomas (SCAs) among non-functioning pituitary adenomas preoperatively using noninvasive radiomics. A total of 302 patients including 146 patients diagnosed with SCAs and 156 patients with non-SCAs were enrolled (training set: n = 242; test set: n = 60). Tumor segmentation was manually generated using ITK-SNAP. From T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and contrast-enhanced T1WI, 2550 radiomics features were extracted using Pyradiomics. Pearson’s correlation coefficient values were calculated to exclude redundant features. Several machine learning algorithms were developed to predict SCAs incorporating the radiomics and semantic features including clinical, laboratory, and radiology-associated features. The performance of models was evaluated by AUC. Patients in the SCA group were younger (49.5 vs 55.2 years old) and more female (85.6% vs 37.2%) than those in the non-SCA group (p < 0.001). More invasiveness (p = 0.011) and cystic and microcystic change (p < 0.001) were observed in patients with SCAs. The ensemble algorithm presented the largest AUC of 0.927 among all the algorithms trained in the test set, and the accuracy, specificity, and sensitivity of predicting SCAs were all 0.867 (at cut-off 0.5). The overall model performed better than that only using semantic features available in the clinic. Radiomics prediction was the most important feature, with gender ranking second and age ranking third. Radiomics features on T2WI were superior to those on other MR modalities in SCA prediction. Our ensemble learning model outperformed current clinical practice in differentiating patients with SCAs and non-SCAs using radiomics, which might help make appropriate treatment strategies. • Radiomics might improve the preoperative diagnosis of SCAs by MR images. • T2WI was superior to T1WI and CE-T1WI in the preoperative diagnosis of SCAs. • The ensemble machine learning model outperformed current clinical practice in SCAs diagnosis and treatment decision-making could be more individualised using the nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
合适不愁完成签到,获得积分10
5秒前
5秒前
碗碗完成签到,获得积分10
5秒前
qiqi完成签到,获得积分10
6秒前
搞怪烨伟发布了新的文献求助10
7秒前
9秒前
美少女发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
wyj完成签到,获得积分10
12秒前
圆心角发布了新的文献求助10
14秒前
羊羊发布了新的文献求助30
14秒前
逸群发布了新的文献求助10
15秒前
16秒前
英姑应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
欣慰外绣发布了新的文献求助10
17秒前
18秒前
干净含烟发布了新的文献求助10
18秒前
奋斗的忆南完成签到,获得积分10
19秒前
苗条的嘉熙完成签到 ,获得积分10
22秒前
22秒前
22秒前
22秒前
23秒前
Sophiaaa发布了新的文献求助10
25秒前
Lucas应助欣慰外绣采纳,获得10
25秒前
aj'发布了新的文献求助10
25秒前
健壮不斜完成签到 ,获得积分10
27秒前
huco发布了新的文献求助10
27秒前
云云然完成签到,获得积分10
28秒前
fang完成签到 ,获得积分10
28秒前
数乱了梨花完成签到 ,获得积分10
29秒前
30秒前
TiAmo完成签到 ,获得积分10
33秒前
耍酷的棉花糖完成签到,获得积分10
35秒前
月月月鸟伟完成签到,获得积分10
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140266
求助须知:如何正确求助?哪些是违规求助? 2791039
关于积分的说明 7797809
捐赠科研通 2447561
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194