Deep learning-based automatic delineation of anal cancer gross tumour volume: a multimodality comparison of CT, PET and MRI

医学 多模态 肛癌 核医学 正电子发射断层摄影术 放射科 癌症 PET-CT 癌症影像学
作者
Aurora Rosvoll Groendahl,Yngve Mardal Moe,Christine Kiran Kaushal,Bao Ngoc Huynh,Espen Rusten,Oliver Tomic,Eivor Hernes,Bettina Hanekamp,Christine Undseth,Marianne Grønlie Guren,Eirik Malinen,Cecilia M. Futsaether
出处
期刊:Acta Oncologica [Taylor & Francis]
卷期号:: 1-8
标识
DOI:10.1080/0284186x.2021.1994645
摘要

Background Accurate target volume delineation is a prerequisite for high-precision radiotherapy. However, manual delineation is resource-demanding and prone to interobserver variation. An automatic delineation approach could potentially save time and increase delineation consistency. In this study, the applicability of deep learning for fully automatic delineation of the gross tumour volume (GTV) in patients with anal squamous cell carcinoma (ASCC) was evaluated for the first time. An extensive comparison of the effects single modality and multimodality combinations of computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) have on automatic delineation quality was conducted. Material and methods 18F-fluorodeoxyglucose PET/CT and contrast-enhanced CT (ceCT) images were collected for 86 patients with ASCC. A subset of 36 patients also underwent a study-specific 3T MRI examination including T2- and diffusion-weighted imaging. The resulting two datasets were analysed separately. A two-dimensional U-Net convolutional neural network (CNN) was trained to delineate the GTV in axial image slices based on single or multimodality image input. Manual GTV delineations constituted the ground truth for CNN model training and evaluation. Models were evaluated using the Dice similarity coefficient (Dice) and surface distance metrics computed from five-fold cross-validation. Results CNN-generated automatic delineations demonstrated good agreement with the ground truth, resulting in mean Dice scores of 0.65-0.76 and 0.74-0.83 for the 86 and 36-patient datasets, respectively. For both datasets, the highest mean Dice scores were obtained using a multimodal combination of PET and ceCT (0.76-0.83). However, models based on single modality ceCT performed comparably well (0.74-0.81). T2W-only models performed acceptably but were somewhat inferior to the PET/ceCT and ceCT-based models. Conclusion CNNs provided high-quality automatic GTV delineations for both single and multimodality image input, indicating that deep learning may prove a versatile tool for target volume delineation in future patients with ASCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qi发布了新的文献求助10
刚刚
普外科老白完成签到,获得积分10
1秒前
拿铁五分糖完成签到,获得积分10
1秒前
阿克图尔斯·蒙斯克完成签到,获得积分10
1秒前
1秒前
1秒前
渔婆完成签到,获得积分10
1秒前
谨慎垣完成签到,获得积分10
1秒前
皮皮虾完成签到 ,获得积分10
2秒前
katrina完成签到,获得积分10
3秒前
3秒前
4秒前
马登完成签到,获得积分10
4秒前
离言完成签到,获得积分10
4秒前
知性的问玉完成签到,获得积分10
4秒前
5秒前
酚羟基装醇完成签到,获得积分10
6秒前
亚当完成签到 ,获得积分10
6秒前
清清甜应助lzh采纳,获得10
6秒前
永远55度发布了新的文献求助10
7秒前
6666666发布了新的文献求助10
7秒前
童话完成签到,获得积分10
7秒前
7秒前
sujinyu发布了新的文献求助10
7秒前
lkk完成签到,获得积分10
8秒前
勤勤的新星完成签到,获得积分10
8秒前
8秒前
科研小牛马完成签到,获得积分10
8秒前
guohuameike完成签到,获得积分10
9秒前
zanedou完成签到,获得积分10
9秒前
红绿蓝完成签到 ,获得积分10
9秒前
9秒前
希望天下0贩的0应助ggdio采纳,获得10
9秒前
NANFENGSUSU发布了新的文献求助10
10秒前
10秒前
天天快乐应助justonce采纳,获得10
10秒前
10秒前
10秒前
你去打输出关注了科研通微信公众号
10秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044