Deep learning-based automatic delineation of anal cancer gross tumour volume: a multimodality comparison of CT, PET and MRI

医学 多模态 肛癌 核医学 正电子发射断层摄影术 放射科 癌症 PET-CT 癌症影像学
作者
Aurora Rosvoll Groendahl,Yngve Mardal Moe,Christine Kiran Kaushal,Bao Ngoc Huynh,Espen Rusten,Oliver Tomic,Eivor Hernes,Bettina Hanekamp,Christine Undseth,Marianne Grønlie Guren,Eirik Malinen,Cecilia M. Futsaether
出处
期刊:Acta Oncologica [Informa]
卷期号:: 1-8
标识
DOI:10.1080/0284186x.2021.1994645
摘要

Background Accurate target volume delineation is a prerequisite for high-precision radiotherapy. However, manual delineation is resource-demanding and prone to interobserver variation. An automatic delineation approach could potentially save time and increase delineation consistency. In this study, the applicability of deep learning for fully automatic delineation of the gross tumour volume (GTV) in patients with anal squamous cell carcinoma (ASCC) was evaluated for the first time. An extensive comparison of the effects single modality and multimodality combinations of computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) have on automatic delineation quality was conducted. Material and methods 18F-fluorodeoxyglucose PET/CT and contrast-enhanced CT (ceCT) images were collected for 86 patients with ASCC. A subset of 36 patients also underwent a study-specific 3T MRI examination including T2- and diffusion-weighted imaging. The resulting two datasets were analysed separately. A two-dimensional U-Net convolutional neural network (CNN) was trained to delineate the GTV in axial image slices based on single or multimodality image input. Manual GTV delineations constituted the ground truth for CNN model training and evaluation. Models were evaluated using the Dice similarity coefficient (Dice) and surface distance metrics computed from five-fold cross-validation. Results CNN-generated automatic delineations demonstrated good agreement with the ground truth, resulting in mean Dice scores of 0.65-0.76 and 0.74-0.83 for the 86 and 36-patient datasets, respectively. For both datasets, the highest mean Dice scores were obtained using a multimodal combination of PET and ceCT (0.76-0.83). However, models based on single modality ceCT performed comparably well (0.74-0.81). T2W-only models performed acceptably but were somewhat inferior to the PET/ceCT and ceCT-based models. Conclusion CNNs provided high-quality automatic GTV delineations for both single and multimodality image input, indicating that deep learning may prove a versatile tool for target volume delineation in future patients with ASCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喻辰星发布了新的文献求助10
刚刚
jasmine970000完成签到,获得积分10
刚刚
神勇的雅香应助zhanzhanzhan采纳,获得10
1秒前
研友_8yPrqZ完成签到,获得积分10
1秒前
自信的伊完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
爆米花应助9℃采纳,获得10
3秒前
Raymond完成签到,获得积分0
4秒前
鱼雷发布了新的文献求助10
4秒前
甜蜜秋蝶发布了新的文献求助10
4秒前
ysl发布了新的文献求助30
4秒前
yyy完成签到,获得积分10
4秒前
4秒前
自信的伊发布了新的文献求助10
5秒前
Stanley发布了新的文献求助10
5秒前
wang发布了新的文献求助10
5秒前
5秒前
大鹏发布了新的文献求助50
5秒前
丘比特应助艺玲采纳,获得10
5秒前
hobowei发布了新的文献求助10
6秒前
梦里见陈情完成签到,获得积分10
6秒前
JJJ应助szh123采纳,获得10
6秒前
FFFFFFF应助细腻沅采纳,获得10
6秒前
ym发布了新的文献求助10
6秒前
Yn完成签到 ,获得积分10
7秒前
7秒前
秋季完成签到,获得积分10
8秒前
wwb完成签到,获得积分10
8秒前
张自信完成签到,获得积分10
9秒前
华仔应助VDC采纳,获得10
9秒前
嘟嘟完成签到,获得积分10
10秒前
卡卡完成签到,获得积分10
10秒前
10秒前
十三发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762