Deep learning-based automatic delineation of anal cancer gross tumour volume: a multimodality comparison of CT, PET and MRI

医学 多模态 肛癌 核医学 正电子发射断层摄影术 放射科 癌症 PET-CT 癌症影像学
作者
Aurora Rosvoll Groendahl,Yngve Mardal Moe,Christine Kiran Kaushal,Bao Ngoc Huynh,Espen Rusten,Oliver Tomic,Eivor Hernes,Bettina Hanekamp,Christine Undseth,Marianne Grønlie Guren,Eirik Malinen,Cecilia M. Futsaether
出处
期刊:Acta Oncologica [Informa]
卷期号:: 1-8
标识
DOI:10.1080/0284186x.2021.1994645
摘要

Background Accurate target volume delineation is a prerequisite for high-precision radiotherapy. However, manual delineation is resource-demanding and prone to interobserver variation. An automatic delineation approach could potentially save time and increase delineation consistency. In this study, the applicability of deep learning for fully automatic delineation of the gross tumour volume (GTV) in patients with anal squamous cell carcinoma (ASCC) was evaluated for the first time. An extensive comparison of the effects single modality and multimodality combinations of computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) have on automatic delineation quality was conducted. Material and methods 18F-fluorodeoxyglucose PET/CT and contrast-enhanced CT (ceCT) images were collected for 86 patients with ASCC. A subset of 36 patients also underwent a study-specific 3T MRI examination including T2- and diffusion-weighted imaging. The resulting two datasets were analysed separately. A two-dimensional U-Net convolutional neural network (CNN) was trained to delineate the GTV in axial image slices based on single or multimodality image input. Manual GTV delineations constituted the ground truth for CNN model training and evaluation. Models were evaluated using the Dice similarity coefficient (Dice) and surface distance metrics computed from five-fold cross-validation. Results CNN-generated automatic delineations demonstrated good agreement with the ground truth, resulting in mean Dice scores of 0.65-0.76 and 0.74-0.83 for the 86 and 36-patient datasets, respectively. For both datasets, the highest mean Dice scores were obtained using a multimodal combination of PET and ceCT (0.76-0.83). However, models based on single modality ceCT performed comparably well (0.74-0.81). T2W-only models performed acceptably but were somewhat inferior to the PET/ceCT and ceCT-based models. Conclusion CNNs provided high-quality automatic GTV delineations for both single and multimodality image input, indicating that deep learning may prove a versatile tool for target volume delineation in future patients with ASCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hyl采纳,获得10
刚刚
Hello应助木棉采纳,获得30
3秒前
marshyyy应助mxq采纳,获得10
7秒前
9秒前
10秒前
于浩完成签到,获得积分10
12秒前
ganzhongxin发布了新的文献求助10
13秒前
Neon0524完成签到 ,获得积分10
13秒前
14秒前
爱撒娇的曼凝完成签到,获得积分10
14秒前
丘比特应助谦让平安采纳,获得10
16秒前
16秒前
17秒前
Specification应助Lang777采纳,获得10
18秒前
18秒前
19秒前
19秒前
zhou完成签到,获得积分10
19秒前
尛瞐慶成发布了新的文献求助10
20秒前
20秒前
学不会完成签到,获得积分20
21秒前
22秒前
Yu发布了新的文献求助10
22秒前
shan发布了新的文献求助10
23秒前
姜姜发布了新的文献求助10
23秒前
24秒前
学不会发布了新的文献求助10
24秒前
纯氧发布了新的文献求助10
26秒前
27秒前
27秒前
jianning完成签到,获得积分10
27秒前
大个应助橘子采纳,获得10
28秒前
28秒前
28秒前
lanxinyue完成签到,获得积分10
28秒前
Felixsun发布了新的文献求助10
28秒前
zzz发布了新的文献求助10
29秒前
李爱国应助奔奔采纳,获得10
30秒前
黄沙漠发布了新的文献求助10
30秒前
阿白发布了新的文献求助10
30秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596