Robust optimization model for medical staff rebalancing problem with data contamination during COVID-19 pandemic

大流行 2019年冠状病毒病(COVID-19) 稳健优化 离群值 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 任务(项目管理) 污染 计算机科学 方案(数学) 风险分析(工程) 运筹学 业务 数学优化 工程类 人工智能 医学 数学 传染病(医学专业) 病理 数学分析 生态学 系统工程 疾病 生物
作者
Xuehong Gao,Guozhong Huang,Qiuhong Zhao,Cejun Cao,Huiling Jiang
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:60 (5): 1737-1766 被引量:16
标识
DOI:10.1080/00207543.2021.1995793
摘要

After the outbreak of the COVID-19 pandemic, the naturally dissimilar prevalence of infection resulted in a growing imbalance between supply and demand for medical staff. Rebalancing the medical staff seems a pressing task following the uncertain environment. However, once the collected data are contaminated, the optimal solution obtained through traditional methods may be located far away from the true one. In this sense, finding a robust optimization method that is less sensitive to outliers and accounts for uncertain future events is warranted. Consequently, this study deeply investigates the medical staff rebalancing problem with data contamination and proposes two robust optimization models to cure the detrimental consequences caused by contaminated data. Due to the nonlinearity of the proposed robust models, the corresponding linearisation approaches are developed to determine the unique medical staff rebalancing scheme. To validate the proposed models and methods, a real case study from the U.S. is implemented. Finally, study results indicate that the proposed methods can overcome the effects of data contamination, and deep managerial implications and actionable insights from theory and practice regarding the cooperation mechanism and medical staff rebalancing strategies are drawn from the case study, which provides the main needs and benefits of this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuxiansheng完成签到,获得积分10
1秒前
YiJin_Wang发布了新的文献求助10
1秒前
2秒前
重要的一江完成签到,获得积分10
3秒前
3秒前
4秒前
Zoom完成签到,获得积分10
4秒前
4秒前
儒雅寒天完成签到,获得积分10
4秒前
白风夕月发布了新的文献求助10
5秒前
Lucas应助科研采纳,获得10
5秒前
6秒前
平淡夏槐发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
美丽猫咪发布了新的文献求助10
8秒前
儒雅寒天发布了新的文献求助10
8秒前
keyanxiaoliu发布了新的文献求助10
9秒前
zhao发布了新的文献求助10
12秒前
科研通AI5应助zhuxiansheng采纳,获得10
13秒前
焦爽发布了新的文献求助10
13秒前
白rain完成签到,获得积分10
13秒前
Zzzzccc发布了新的文献求助10
14秒前
Sylvia发布了新的文献求助30
14秒前
14秒前
烟花应助儒雅寒天采纳,获得10
14秒前
16秒前
小蘑菇应助keyanxiaoliu采纳,获得10
20秒前
Paris发布了新的文献求助10
20秒前
肉肉完成签到,获得积分10
21秒前
24秒前
27秒前
luluu完成签到,获得积分20
28秒前
量子星尘发布了新的文献求助10
30秒前
fxx2021发布了新的文献求助10
30秒前
焦爽完成签到,获得积分20
30秒前
Bu完成签到,获得积分10
32秒前
领导范儿应助WH采纳,获得10
32秒前
XIN完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577961
求助须知:如何正确求助?哪些是违规求助? 3997059
关于积分的说明 12374252
捐赠科研通 3671085
什么是DOI,文献DOI怎么找? 2023246
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176