Robust optimization model for medical staff rebalancing problem with data contamination during COVID-19 pandemic

大流行 2019年冠状病毒病(COVID-19) 稳健优化 离群值 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 任务(项目管理) 污染 计算机科学 方案(数学) 风险分析(工程) 运筹学 业务 数学优化 工程类 人工智能 医学 数学 传染病(医学专业) 病理 数学分析 生态学 系统工程 疾病 生物
作者
Xuehong Gao,Guozhong Huang,Qiuhong Zhao,Cejun Cao,Huiling Jiang
出处
期刊:International Journal of Production Research [Informa]
卷期号:60 (5): 1737-1766 被引量:16
标识
DOI:10.1080/00207543.2021.1995793
摘要

After the outbreak of the COVID-19 pandemic, the naturally dissimilar prevalence of infection resulted in a growing imbalance between supply and demand for medical staff. Rebalancing the medical staff seems a pressing task following the uncertain environment. However, once the collected data are contaminated, the optimal solution obtained through traditional methods may be located far away from the true one. In this sense, finding a robust optimization method that is less sensitive to outliers and accounts for uncertain future events is warranted. Consequently, this study deeply investigates the medical staff rebalancing problem with data contamination and proposes two robust optimization models to cure the detrimental consequences caused by contaminated data. Due to the nonlinearity of the proposed robust models, the corresponding linearisation approaches are developed to determine the unique medical staff rebalancing scheme. To validate the proposed models and methods, a real case study from the U.S. is implemented. Finally, study results indicate that the proposed methods can overcome the effects of data contamination, and deep managerial implications and actionable insights from theory and practice regarding the cooperation mechanism and medical staff rebalancing strategies are drawn from the case study, which provides the main needs and benefits of this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖虎发布了新的文献求助10
1秒前
1秒前
dy发布了新的文献求助10
4秒前
4秒前
qwer发布了新的文献求助10
5秒前
努努完成签到 ,获得积分10
5秒前
羊加橙发布了新的文献求助10
5秒前
翱翔者完成签到,获得积分10
6秒前
6秒前
牧童完成签到,获得积分10
7秒前
科研通AI5应助平凡的世界采纳,获得30
8秒前
疑问师完成签到,获得积分10
9秒前
kw完成签到 ,获得积分10
9秒前
陈飞飞发布了新的文献求助10
10秒前
10秒前
11秒前
bkagyin应助dy采纳,获得10
11秒前
橙子快跑发布了新的文献求助10
11秒前
13秒前
纯真的白风完成签到,获得积分20
14秒前
14秒前
老板娘完成签到,获得积分10
15秒前
Gigi发布了新的文献求助10
15秒前
15秒前
体贴怜翠发布了新的文献求助10
18秒前
打打应助Gigi采纳,获得10
18秒前
杳鸢应助眼睛大老姆采纳,获得10
18秒前
Urologyzz发布了新的文献求助10
19秒前
烟花应助乐观的颦采纳,获得10
19秒前
小红狐完成签到,获得积分10
20秒前
我是老大应助橙子快跑采纳,获得10
20秒前
21秒前
21秒前
21秒前
我是老大应助hxliu采纳,获得10
21秒前
充电宝应助有魅力夜安采纳,获得10
22秒前
绿豆糕ovo完成签到,获得积分10
22秒前
23秒前
共享精神应助纯真的白风采纳,获得10
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583640
求助须知:如何正确求助?哪些是违规求助? 3152886
关于积分的说明 9494504
捐赠科研通 2855533
什么是DOI,文献DOI怎么找? 1569583
邀请新用户注册赠送积分活动 735428
科研通“疑难数据库(出版商)”最低求助积分说明 721228