Robust optimization model for medical staff rebalancing problem with data contamination during COVID-19 pandemic

大流行 2019年冠状病毒病(COVID-19) 稳健优化 离群值 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 任务(项目管理) 污染 计算机科学 方案(数学) 风险分析(工程) 运筹学 业务 数学优化 工程类 人工智能 医学 数学 传染病(医学专业) 病理 数学分析 生态学 系统工程 疾病 生物
作者
Xuehong Gao,Guozhong Huang,Qiuhong Zhao,Cejun Cao,Huiling Jiang
出处
期刊:International Journal of Production Research [Informa]
卷期号:60 (5): 1737-1766 被引量:16
标识
DOI:10.1080/00207543.2021.1995793
摘要

After the outbreak of the COVID-19 pandemic, the naturally dissimilar prevalence of infection resulted in a growing imbalance between supply and demand for medical staff. Rebalancing the medical staff seems a pressing task following the uncertain environment. However, once the collected data are contaminated, the optimal solution obtained through traditional methods may be located far away from the true one. In this sense, finding a robust optimization method that is less sensitive to outliers and accounts for uncertain future events is warranted. Consequently, this study deeply investigates the medical staff rebalancing problem with data contamination and proposes two robust optimization models to cure the detrimental consequences caused by contaminated data. Due to the nonlinearity of the proposed robust models, the corresponding linearisation approaches are developed to determine the unique medical staff rebalancing scheme. To validate the proposed models and methods, a real case study from the U.S. is implemented. Finally, study results indicate that the proposed methods can overcome the effects of data contamination, and deep managerial implications and actionable insights from theory and practice regarding the cooperation mechanism and medical staff rebalancing strategies are drawn from the case study, which provides the main needs and benefits of this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助李里哩采纳,获得10
刚刚
刚刚
csy完成签到,获得积分20
1秒前
hzs关闭了hzs文献求助
1秒前
Lucas应助coco采纳,获得10
1秒前
来年完成签到,获得积分10
2秒前
晓晓来了完成签到,获得积分10
2秒前
sunwin完成签到,获得积分10
2秒前
3秒前
4秒前
黄烨发布了新的文献求助10
5秒前
Jacquielin发布了新的文献求助10
5秒前
lxcy0612发布了新的文献求助10
5秒前
6秒前
6秒前
ER完成签到,获得积分10
6秒前
2633148059发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
木木完成签到,获得积分10
9秒前
10秒前
王敬顺发布了新的文献求助10
10秒前
无奈的幻雪完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
jueding应助尹善冰采纳,获得10
13秒前
lyy发布了新的文献求助10
13秒前
梓树发布了新的文献求助10
13秒前
13秒前
沐晨浠完成签到,获得积分10
14秒前
十号完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
英俊的铭应助淑芬采纳,获得10
15秒前
李爱国应助斯文123采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049