Integrating multiple genomic imaging data for the study of lung metastasis in sarcomas using multi-dimensional constrained joint non-negative matrix factorization

非负矩阵分解 模式识别(心理学) 计算机科学 特征(语言学) 矩阵分解 人工智能 计算生物学 生物 语言学 量子力学 物理 哲学 特征向量
作者
Jin Deng,Weiming Zeng,Sizhe Luo,Wei Kong,Yuhu Shi,Ying Li,Hua Zhang
出处
期刊:Information Sciences [Elsevier]
卷期号:576: 24-36 被引量:21
标识
DOI:10.1016/j.ins.2021.06.058
摘要

Integrative analysis of histopathology images and genomic data enables the discovery of potential biomarkers and multimodal association patterns. However, few studies have established effective association models for complex diseases, such as sarcoma, by combining histopathological images with multiple genetic variation data. Here, we present an integrative multiple genomic imaging framework called multi-dimensional constrained joint non-negative matrix factorization (MDJNMF) to identify modules related to lung metastasis of sarcomas based on sample-matched whole-solid image, DNA methylation, and copy number variation features. Three types of feature matrices were projected onto a common feature space, in which heterogeneous variables with large coefficients in the same projected direction form a common module. The correlation between image features and genetic variation features is used as network-regularized constraints to improve the module accuracy. Sparsity and orthogonal constraints are utilized to achieve the modular sparse solution. Multi-level analysis indicates that our method effectively discovers biologically functional modules associated with sarcoma or lung metastasis. The representative module reveals a significant correlation between image features and genetic variation features and excavates potential diagnostic biomarkers. In summary, the proposed method provides new clues for identifying association patterns and biomarkers using multiple types of data sources for other diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木发布了新的文献求助10
1秒前
科研通AI6应助浮泷采纳,获得10
2秒前
61号发布了新的文献求助30
3秒前
3秒前
左欣岳完成签到 ,获得积分10
4秒前
4秒前
yan完成签到,获得积分10
5秒前
小阙123发布了新的文献求助30
9秒前
我的阳光完成签到,获得积分10
9秒前
唠叨的曼易完成签到,获得积分10
10秒前
11秒前
木木完成签到,获得积分20
12秒前
13秒前
aaa完成签到,获得积分10
13秒前
4114完成签到,获得积分10
13秒前
purplelove发布了新的文献求助10
14秒前
15秒前
16秒前
xzz完成签到,获得积分20
18秒前
李健应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得200
18秒前
大模型应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
xzy998应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
Thien应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
大龙哥886应助科研通管家采纳,获得20
18秒前
18秒前
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
gly完成签到,获得积分10
19秒前
19秒前
共享精神应助漂亮素采纳,获得10
20秒前
21秒前
Akebi发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571875
求助须知:如何正确求助?哪些是违规求助? 4657052
关于积分的说明 14719094
捐赠科研通 4597872
什么是DOI,文献DOI怎么找? 2523456
邀请新用户注册赠送积分活动 1494258
关于科研通互助平台的介绍 1464354