已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recurrence Quantification Analysis of EEG signals for Children with ASD

脑电图 听力学 语音识别 心理学 计算机科学 医学 神经科学
作者
R. Menaka,M. ThangaAarthy,Renuka Mahadev Chavan,Perumal R.C,Mahima S Menon
出处
期刊:Journal of Scientific & Industrial Research 卷期号:80 (05)
标识
DOI:10.56042/jsir.v80i05.39893
摘要

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairment in sensory modulation, repetitive behavior etc. It would lead to difficulties in adaptive behavior and intellectual functioning. Subjective scales as childhood autism rating scale, 3Di, etc. are available to assess the symptoms of Autism. Currently there are no reliable objective diagnostic methods available for assessment of Autism. Also, Early diagnosis of will help in designing customized training and putting those kids in regular stream. The purpose of this research is to observe the response of the brain for auditory/visual stimuli in typically Developing (TD) and children with autism through electroencephalography (EEG). Application of nonlinear methods for EEG signal analysis may help in characterization of brain activity to describe the neurophysiological commonalities and differences between typically developing and autism children. Among the various non-linear methods, the underlying dynamics can be analyzed well with Recurrent Quantification Analysis (RQA). But, the performance of RQA based classification depends on the choice of parameters like embedding dimension, time delay, neighborhood selection and distance metric. Different experiments were conducted by varying methods for neighborhood selection and distance metric. In this research, for better information retrieval cosine distance metric is additionally considered for analysis and compared      with other distance metrics in RQA. Each computational combination of RQA measures and the responding channels were analyzed and discussed. It was observed that FAN neighborhood with cosine distance parameters were able to discriminate between ASD and TD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥卷完成签到,获得积分10
刚刚
acfun完成签到,获得积分20
3秒前
Jasper应助马爱林采纳,获得10
4秒前
向阳葵完成签到 ,获得积分10
4秒前
liangjiangbo完成签到,获得积分10
4秒前
加油完成签到,获得积分10
6秒前
行者发布了新的文献求助20
8秒前
ldysaber完成签到,获得积分10
8秒前
占囧发布了新的文献求助10
10秒前
Meyako完成签到 ,获得积分10
12秒前
天天快乐应助CMCM采纳,获得10
12秒前
fengyuke发布了新的文献求助10
13秒前
春山完成签到 ,获得积分10
18秒前
莫即完成签到 ,获得积分10
21秒前
火山完成签到,获得积分10
21秒前
火星上云朵完成签到 ,获得积分10
21秒前
22秒前
28秒前
marska完成签到,获得积分10
28秒前
dzll完成签到,获得积分10
30秒前
叶95完成签到 ,获得积分10
31秒前
Hello应助javeeen采纳,获得10
31秒前
哆啦A梦完成签到 ,获得积分10
34秒前
所所应助占囧采纳,获得10
34秒前
味子橘完成签到 ,获得积分10
35秒前
萧萧完成签到,获得积分10
35秒前
37秒前
tuanheqi应助科研通管家采纳,获得50
41秒前
传奇3应助科研通管家采纳,获得10
41秒前
哈哈悦完成签到,获得积分10
41秒前
英姑应助Billy采纳,获得10
41秒前
41秒前
SciGPT应助行者采纳,获得10
43秒前
他也蓝完成签到,获得积分10
45秒前
无语的稀发布了新的文献求助10
45秒前
47秒前
47秒前
小白菜完成签到,获得积分10
50秒前
51秒前
占囧完成签到,获得积分10
51秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256743
求助须知:如何正确求助?哪些是违规求助? 2898909
关于积分的说明 8302988
捐赠科研通 2568075
什么是DOI,文献DOI怎么找? 1394872
科研通“疑难数据库(出版商)”最低求助积分说明 652924
邀请新用户注册赠送积分活动 630631