Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior

去模糊 先验概率 人工智能 降噪 残余物 模式识别(心理学) 图像(数学) 计算机科学 相似性(几何) 非本地手段 数学 稀疏逼近 图像复原 算法 图像处理 贝叶斯概率 图像去噪
作者
Zhiyuan Zha,Xinggan Zhang,Qiong Wang,Yechao Bai,Yang Chen,Lan Tang,Xin Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:275: 2294-2306 被引量:39
标识
DOI:10.1016/j.neucom.2017.11.004
摘要

Nonlocal image representation has been successfully used in many image-related inverse problems including denoising, deblurring and deblocking. However, most existing methods only consider the nonlocal self-similarity (NSS) prior of degraded observation image, and few methods use the NSS prior from natural images. In this paper we propose a novel method for image denoising via group sparsity residual constraint with external NSS prior (GSRC-ENSS). Different from the previous NSS prior-based denoising methods, two kinds of NSS prior (e.g., NSS priors of noisy image and natural images) are used for image denoising. In particular, to enhance the performance of image denoising, the group sparsity residual is proposed, and thus the problem of image denoising is translated into reducing the group sparsity residual. Because the groups contain a large amount of NSS information of natural images, to reduce the group sparsity residual, we obtain a good estimation of the group sparse coefficients of the original image by the external NSS prior based on Gaussian Mixture Model (GMM) learning, and the group sparse coefficients of noisy image are used to approximate the estimation. To combine these two NSS priors better, an effective iterative shrinkage algorithm is developed to solve the proposed GSRC-ENSS model. Experimental results demonstrate that the proposed GSRC-ENSS not only outperforms several state-of-the-art methods, but also delivers the best qualitative denoising results with finer details and less ringing artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kevindeng发布了新的文献求助20
刚刚
yx发布了新的文献求助10
刚刚
1秒前
6680668发布了新的文献求助10
1秒前
baobaonaixi完成签到,获得积分10
1秒前
1秒前
1秒前
三石完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
DAYTOY完成签到,获得积分10
3秒前
4秒前
4秒前
Flllllll完成签到,获得积分10
4秒前
喜悦成威完成签到,获得积分10
4秒前
酷波er应助南佳采纳,获得10
5秒前
5秒前
5秒前
Ava应助yan儿采纳,获得10
5秒前
丘比特应助纯真的莫茗采纳,获得10
5秒前
无花果应助勤恳的素阴采纳,获得10
5秒前
调皮的妙竹完成签到,获得积分10
6秒前
沫沫完成签到,获得积分10
6秒前
wzp发布了新的文献求助10
6秒前
6秒前
程程完成签到,获得积分20
6秒前
打打应助Ll采纳,获得10
6秒前
乐观发卡完成签到,获得积分20
7秒前
安详的帽子完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
vivi猫小咪发布了新的文献求助10
8秒前
Sue完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Lucas应助南方姑娘采纳,获得10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762