Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior

去模糊 先验概率 人工智能 降噪 残余物 模式识别(心理学) 图像(数学) 计算机科学 相似性(几何) 非本地手段 数学 稀疏逼近 图像复原 算法 图像处理 贝叶斯概率 图像去噪
作者
Zhiyuan Zha,Xinggan Zhang,Qiong Wang,Yechao Bai,Yang Chen,Lan Tang,Xin Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:275: 2294-2306 被引量:39
标识
DOI:10.1016/j.neucom.2017.11.004
摘要

Nonlocal image representation has been successfully used in many image-related inverse problems including denoising, deblurring and deblocking. However, most existing methods only consider the nonlocal self-similarity (NSS) prior of degraded observation image, and few methods use the NSS prior from natural images. In this paper we propose a novel method for image denoising via group sparsity residual constraint with external NSS prior (GSRC-ENSS). Different from the previous NSS prior-based denoising methods, two kinds of NSS prior (e.g., NSS priors of noisy image and natural images) are used for image denoising. In particular, to enhance the performance of image denoising, the group sparsity residual is proposed, and thus the problem of image denoising is translated into reducing the group sparsity residual. Because the groups contain a large amount of NSS information of natural images, to reduce the group sparsity residual, we obtain a good estimation of the group sparse coefficients of the original image by the external NSS prior based on Gaussian Mixture Model (GMM) learning, and the group sparse coefficients of noisy image are used to approximate the estimation. To combine these two NSS priors better, an effective iterative shrinkage algorithm is developed to solve the proposed GSRC-ENSS model. Experimental results demonstrate that the proposed GSRC-ENSS not only outperforms several state-of-the-art methods, but also delivers the best qualitative denoising results with finer details and less ringing artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
kakashi完成签到,获得积分10
3秒前
nuonuo发布了新的文献求助10
3秒前
梦里的大子刊完成签到 ,获得积分10
4秒前
5秒前
大模型应助猪猪hero采纳,获得10
6秒前
张乐发布了新的文献求助30
7秒前
Jenny712发布了新的文献求助10
8秒前
LYH完成签到,获得积分10
9秒前
健壮从霜发布了新的文献求助10
10秒前
11秒前
11秒前
lanjq兰坚强完成签到,获得积分10
12秒前
13秒前
ttt完成签到,获得积分10
14秒前
情怀应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
Cleo应助科研通管家采纳,获得10
15秒前
15秒前
wlscj应助科研通管家采纳,获得20
15秒前
浮游应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
16秒前
evvj发布了新的文献求助10
16秒前
华仔应助科研通管家采纳,获得30
16秒前
无限的灵阳完成签到 ,获得积分20
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
wanci应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
16秒前
lawang发布了新的文献求助20
16秒前
amberzyc应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315