Critical Role of Ultrathin Graphene Films with Tunable Thickness in Enabling Highly Stable Sodium Metal Anodes

石墨烯 阳极 材料科学 电解质 化学工程 电流密度 电化学 金属 氧化物 纳米技术 电极 冶金 化学 物理 物理化学 量子力学 工程类
作者
Huan Wang,Chuanlong Wang,Edward Matios,Weiyang Li
出处
期刊:Nano Letters [American Chemical Society]
卷期号:17 (11): 6808-6815 被引量:227
标识
DOI:10.1021/acs.nanolett.7b03071
摘要

Sodium (Na) metal has shown great promise as an anode material for the next-generation energy storage systems because of its high theoretical capacity, low cost, and high earth abundance. However, the extremely high reactivity of Na metal with organic electrolyte leads to the formation of unstable solid electrolyte interphase (SEI) and growth of Na dendrites upon repeated electrochemical stripping/plating, causing poor cycling performance, and serious safety issues. Herein, we present highly stable and dendrite-free Na metal anodes over a wide current range and long-term cycling via directly applying free-standing graphene films with tunable thickness on Na metal surface. We systematically investigate the dependence of Na anode stability on the thickness of the graphene film at different current densities and capacities. Our findings reveal that only a few nanometer (∼2-3 nm) differences in the graphene thickness can have decisive influence on the stability and rate capability of Na anodes. To achieve the optimal performance, the thickness of the graphene film covered on Na surface needs to be meticulously selected based on the applied current density. We demonstrate that with a multilayer graphene film (∼5 nm in thickness) as a protective layer, stable Na cycling behavior was first achieved in carbonate electrolyte without any additives over 100 cycles at a current density as high as 2 mA/cm2 with a high capacity of 3 mAh/cm2. We believe our work could be a viable route toward high-energy Na battery systems, and can provide valuable insights into the lithium batteries as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LAMO发布了新的文献求助10
刚刚
刚刚
朴实的南露完成签到,获得积分20
刚刚
Hello应助Pendulium采纳,获得10
1秒前
落叶完成签到,获得积分10
1秒前
mnjkio163完成签到,获得积分10
1秒前
Spy_R完成签到,获得积分10
2秒前
2秒前
大模型应助年轻的星月采纳,获得10
3秒前
zww完成签到,获得积分10
3秒前
哈温发布了新的文献求助10
3秒前
Square完成签到,获得积分10
4秒前
yy完成签到,获得积分10
4秒前
4秒前
畅快海云完成签到 ,获得积分10
4秒前
5秒前
鱼饼完成签到 ,获得积分10
5秒前
5秒前
单纯的爆米花关注了科研通微信公众号
5秒前
kanglan发布了新的文献求助10
5秒前
李紫晗完成签到,获得积分10
6秒前
体贴的叫兽完成签到,获得积分10
6秒前
LINTING完成签到 ,获得积分20
6秒前
7秒前
小马甲应助Breathe采纳,获得10
7秒前
哈哈完成签到 ,获得积分10
7秒前
爆米花应助jeery采纳,获得10
7秒前
8秒前
焦糖咸鱼完成签到,获得积分10
8秒前
李博士完成签到,获得积分10
8秒前
友好的小鸽子完成签到,获得积分10
8秒前
丁博完成签到,获得积分20
8秒前
慕青应助柔弱的钢铁侠采纳,获得10
9秒前
苏休夫完成签到,获得积分20
9秒前
诚心盼海完成签到,获得积分20
9秒前
chenping_an发布了新的文献求助10
10秒前
小白鼠完成签到 ,获得积分10
10秒前
10秒前
linggggg完成签到,获得积分10
10秒前
邀名射利发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188