Effective Interlayer Engineering of Two-Dimensional VOPO4 Nanosheets via Controlled Organic Intercalation for Improving Alkali Ion Storage

插层(化学) 材料科学 锂(药物) 化学工程 离子 储能 扩散 无机化学 纳米技术 化学 有机化学 热力学 物理 工程类 内分泌学 医学 功率(物理) 冶金 量子力学
作者
Lele Peng,Yue Zhu,Peng Xu,Zhiwei Fang,Wangsheng Chu,Yu Wang,Yujun Xie,Yafei Li,J. Judy,Guihua Yu
出处
期刊:Nano Letters [American Chemical Society]
卷期号:17 (10): 6273-6279 被引量:110
标识
DOI:10.1021/acs.nanolett.7b02958
摘要

Two-dimensional (2D) energy materials have shown the promising electrochemical characteristics for lithium ion storage. However, the decreased active surfaces and the sluggish charge/mass transport for beyond-lithium ion storage that has potential for large-scale energy storage systems, such as sodium or potassium ion storage, caused by the irreversible restacking of 2D materials during electrode processing remain a major challenge. Here we develop a general interlayer engineering strategy to address the above-mentioned challenges by using 2D ultrathin vanadyl phosphate (VOPO4) nanosheets as a model material for challenging sodium ion storage. Via controlled intercalation of organic molecules, such as triethylene glycol and tetrahydrofuran, the sodium ion transport in VOPO4 nanosheets has been significantly improved. In addition to advanced characterization including X-ray diffraction, high-resolution transmission electron microscopy, and X-ray absorption fine structure to characterize the interlayer and the chemical bonding/configuration between the organic intercalants and the VOPO4 host layers, density functional theory calculations are also performed to understand the diffusion behavior of sodium ions in the pure and TEG intercalated VOPO4 nanosheets. Because of the expanded interlayer spacing in combination with the decreased energy barriers for sodium ion diffusion, intercalated VOPO4 nanosheets show much improved sodium ion transport kinetics and greatly enhanced rate capability and cycling stability for sodium ion storage. Our results afford deeper understanding of the interlayer-engineering strategy to improve the sodium ion storage performance of the VOPO4 nanosheets. Our results may also shed light on possible multivalent-ion based energy storage such as Mg2+ and Al3+.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sy发布了新的文献求助10
1秒前
2秒前
2秒前
田様应助Sindy采纳,获得30
2秒前
莫知完成签到,获得积分10
2秒前
2秒前
3秒前
DrKe完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
开朗立世发布了新的文献求助10
5秒前
月野兔完成签到,获得积分10
5秒前
5秒前
奋斗发布了新的文献求助30
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
水草帽完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
斯文败类应助阿治采纳,获得10
10秒前
ceeray23发布了新的文献求助20
11秒前
11秒前
暗眸发布了新的文献求助10
11秒前
11秒前
小小小小小绿红完成签到,获得积分10
12秒前
嘿嘿应助学术蝗虫年猪采纳,获得10
13秒前
SciGPT应助Sindy采纳,获得10
14秒前
研友_VZG7GZ应助奋斗采纳,获得10
14秒前
万能图书馆应助drfang采纳,获得10
14秒前
14秒前
脑洞疼应助hua采纳,获得10
14秒前
我爱科研发布了新的文献求助10
14秒前
why发布了新的文献求助10
14秒前
ddd发布了新的文献求助10
15秒前
漂亮忆南完成签到 ,获得积分10
16秒前
星星在酿酒完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972