Effective Interlayer Engineering of Two-Dimensional VOPO4 Nanosheets via Controlled Organic Intercalation for Improving Alkali Ion Storage

插层(化学) 材料科学 锂(药物) 化学工程 离子 储能 扩散 无机化学 纳米技术 化学 有机化学 热力学 物理 工程类 内分泌学 医学 功率(物理) 冶金 量子力学
作者
Lele Peng,Yue Zhu,Peng Xu,Zhiwei Fang,Wangsheng Chu,Yu Wang,Yujun Xie,Yafei Li,J. Judy,Guihua Yu
出处
期刊:Nano Letters [American Chemical Society]
卷期号:17 (10): 6273-6279 被引量:110
标识
DOI:10.1021/acs.nanolett.7b02958
摘要

Two-dimensional (2D) energy materials have shown the promising electrochemical characteristics for lithium ion storage. However, the decreased active surfaces and the sluggish charge/mass transport for beyond-lithium ion storage that has potential for large-scale energy storage systems, such as sodium or potassium ion storage, caused by the irreversible restacking of 2D materials during electrode processing remain a major challenge. Here we develop a general interlayer engineering strategy to address the above-mentioned challenges by using 2D ultrathin vanadyl phosphate (VOPO4) nanosheets as a model material for challenging sodium ion storage. Via controlled intercalation of organic molecules, such as triethylene glycol and tetrahydrofuran, the sodium ion transport in VOPO4 nanosheets has been significantly improved. In addition to advanced characterization including X-ray diffraction, high-resolution transmission electron microscopy, and X-ray absorption fine structure to characterize the interlayer and the chemical bonding/configuration between the organic intercalants and the VOPO4 host layers, density functional theory calculations are also performed to understand the diffusion behavior of sodium ions in the pure and TEG intercalated VOPO4 nanosheets. Because of the expanded interlayer spacing in combination with the decreased energy barriers for sodium ion diffusion, intercalated VOPO4 nanosheets show much improved sodium ion transport kinetics and greatly enhanced rate capability and cycling stability for sodium ion storage. Our results afford deeper understanding of the interlayer-engineering strategy to improve the sodium ion storage performance of the VOPO4 nanosheets. Our results may also shed light on possible multivalent-ion based energy storage such as Mg2+ and Al3+.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daojia发布了新的文献求助10
刚刚
weifeng发布了新的文献求助10
刚刚
刚刚
北风发布了新的文献求助10
1秒前
1秒前
gwt发布了新的文献求助10
2秒前
2秒前
4秒前
sadascaqwqw完成签到 ,获得积分10
4秒前
可爱多发布了新的文献求助20
6秒前
jzt12138发布了新的文献求助10
7秒前
地塞米松完成签到 ,获得积分10
7秒前
7秒前
8秒前
点凌蝶发布了新的文献求助10
8秒前
善学以致用应助自然映梦采纳,获得10
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
北风完成签到,获得积分10
12秒前
风趣绿竹发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
充电宝应助左鸣采纳,获得10
15秒前
晏旭发布了新的文献求助10
15秒前
15秒前
LY发布了新的文献求助10
15秒前
共享精神应助67n采纳,获得10
16秒前
情怀应助kingwill采纳,获得30
17秒前
永和发布了新的文献求助20
17秒前
132关闭了132文献求助
18秒前
18秒前
八九完成签到,获得积分20
19秒前
20秒前
李爱国应助txfxh采纳,获得50
20秒前
21秒前
自然映梦发布了新的文献求助10
21秒前
二天尔完成签到,获得积分20
21秒前
脑洞疼应助柯擎汉采纳,获得10
22秒前
王大雨发布了新的文献求助10
23秒前
JamesPei应助研究啥采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667