Prediction of Tinnitus Treatment Outcomes Based on EEG Sensors and TFI Score Using Deep Learning

脑电图 耳鸣 听力学 焦虑 医学 人工智能 心理学 计算机科学 机器学习 精神科
作者
Maryam Doborjeh,Xiaoxu Liu,Zohreh Gholami Doborjeh,Yuanyuan Shen,Grant D. Searchfield,Philip J. Sanders,Grace Wang,Alexander Sumich,Wei Qi Yan
出处
期刊:Sensors [MDPI AG]
卷期号:23 (2): 902-902 被引量:2
标识
DOI:10.3390/s23020902
摘要

Tinnitus is a hearing disorder that is characterized by the perception of sounds in the absence of an external source. Currently, there is no pharmaceutical cure for tinnitus, however, multiple therapies and interventions have been developed that improve or control associated distress and anxiety. We propose a new Artificial Intelligence (AI) algorithm as a digital prognostic health system that models electroencephalographic (EEG) data in order to predict patients' responses to tinnitus therapies. The EEG data was collected from patients prior to treatment and 3-months following a sound-based therapy. Feature selection techniques were utilised to identify predictive EEG variables with the best accuracy. The patients' EEG features from both the frequency and functional connectivity domains were entered as inputs that carry knowledge extracted from EEG into AI algorithms for training and predicting therapy outcomes. The AI models differentiated the patients' outcomes into either therapy responder or non-responder, as defined by their Tinnitus Functional Index (TFI) scores, with accuracies ranging from 98%-100%. Our findings demonstrate the potential use of AI, including deep learning, for predicting therapy outcomes in tinnitus. The research suggests an optimal configuration of the EEG sensors that are involved in measuring brain functional changes in response to tinnitus treatments. It identified which EEG electrodes are the most informative sensors and how the EEG frequency and functional connectivity can better classify patients into the responder and non-responder groups. This has potential for real-time monitoring of patient therapy outcomes at home.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kdqiu完成签到,获得积分10
刚刚
我是老大应助Moving_Dr采纳,获得10
1秒前
李哈哈发布了新的文献求助10
2秒前
背后访风完成签到 ,获得积分10
2秒前
YC_Kao完成签到,获得积分10
3秒前
上官若男应助fzzzzlucy采纳,获得10
4秒前
飞翔的蒲公英完成签到,获得积分10
4秒前
我是雪豹关注了科研通微信公众号
6秒前
Naive发布了新的文献求助10
6秒前
6秒前
Jasper应助飞快的以冬采纳,获得10
6秒前
刻苦紫文完成签到 ,获得积分10
10秒前
共享精神应助愉快的夏菡采纳,获得10
11秒前
个性的豁完成签到,获得积分20
14秒前
15秒前
sole完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
灵巧的飞雪完成签到 ,获得积分10
18秒前
我是雪豹发布了新的文献求助10
18秒前
sole发布了新的文献求助10
20秒前
20秒前
20秒前
Victoria发布了新的文献求助10
22秒前
22秒前
crazy完成签到 ,获得积分10
23秒前
xaio发布了新的文献求助10
23秒前
24秒前
今后应助史迪仔采纳,获得10
24秒前
我不爱池鱼应助God采纳,获得10
26秒前
爱卿5271发布了新的文献求助10
29秒前
欣喜眼神完成签到 ,获得积分20
30秒前
山楂完成签到,获得积分10
30秒前
30秒前
rerered发布了新的文献求助10
30秒前
30秒前
Ganlou应助chen采纳,获得10
31秒前
迷人凉面完成签到 ,获得积分10
31秒前
美满的小蘑菇完成签到 ,获得积分10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304504
求助须知:如何正确求助?哪些是违规求助? 2938464
关于积分的说明 8488809
捐赠科研通 2612923
什么是DOI,文献DOI怎么找? 1427023
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647385