亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boosting Few-Shot Fine-Grained Recognition With Background Suppression and Foreground Alignment

计算机科学 Boosting(机器学习) 人工智能 前景检测 计算机视觉 弹丸 模式识别(心理学) 目标检测 材料科学 冶金
作者
Zican Zha,Hao Tang,Yunlian Sun,Jinhui Tang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3947-3961 被引量:68
标识
DOI:10.1109/tcsvt.2023.3236636
摘要

Few-shot fine-grained recognition (FS-FGR) aims to recognize novel fine-grained categories with the help of limited available samples. Undoubtedly, this task inherits the main challenges from both few-shot learning and fine-grained recognition. First, the lack of labeled samples makes the learned model easy to overfit. Second, it also suffers from high intra-class variance and low inter-class differences in the datasets. To address this challenging task, we propose a two-stage background suppression and foreground alignment framework, which is composed of a background activation suppression (BAS) module, a foreground object alignment (FOA) module, and a local-to-local (L2L) similarity metric. Specifically, the BAS is introduced to generate a foreground mask for localization to weaken background disturbance and enhance dominative foreground objects. The FOA then reconstructs the feature map of each support sample according to its correction to the query ones, which addresses the problem of misalignment between support-query image pairs. To enable the proposed method to have the ability to capture subtle differences in confused samples, we present a novel L2L similarity metric to further measure the local similarity between a pair of aligned spatial features in the embedding space. What's more, considering that background interference brings poor robustness, we infer the pairwise similarity of feature maps using both the raw image and the refined image. Extensive experiments conducted on multiple popular fine-grained benchmarks demonstrate that our method outperforms the existing state of the art by a large margin. The source codes are available at: https://github.com/CSer-Tang-hao/BSFA-FSFG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ll发布了新的文献求助10
1秒前
田様应助uu采纳,获得10
2秒前
lwm不想看文献完成签到 ,获得积分10
3秒前
zyx完成签到,获得积分10
3秒前
5秒前
6秒前
领导范儿应助梁朝伟采纳,获得10
7秒前
13秒前
莫即完成签到 ,获得积分10
18秒前
uu发布了新的文献求助10
18秒前
zhuhaot发布了新的文献求助10
19秒前
19秒前
winnie完成签到 ,获得积分10
22秒前
可爱的函函应助waayu采纳,获得10
29秒前
甜甜甜完成签到 ,获得积分10
29秒前
醉倒天瓢完成签到 ,获得积分10
32秒前
39秒前
善学以致用应助稳定上分采纳,获得10
41秒前
活力的小猫咪完成签到 ,获得积分10
44秒前
梁朝伟发布了新的文献求助10
45秒前
zhuhaot完成签到,获得积分10
49秒前
52秒前
小乐儿~发布了新的文献求助10
55秒前
SSSSCCCCIIII完成签到,获得积分10
57秒前
小马甲应助秋以南采纳,获得10
1分钟前
1分钟前
bobo完成签到,获得积分10
1分钟前
天天快乐应助帅气绮露采纳,获得10
1分钟前
秋以南发布了新的文献求助10
1分钟前
英姑应助梁朝伟采纳,获得10
1分钟前
1分钟前
Jenkin完成签到,获得积分10
1分钟前
帅气绮露完成签到,获得积分10
1分钟前
h0jian09完成签到,获得积分10
1分钟前
帅气绮露发布了新的文献求助10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
jnuszjz应助科研通管家采纳,获得10
1分钟前
Percy完成签到 ,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335240
求助须知:如何正确求助?哪些是违规求助? 2964478
关于积分的说明 8613836
捐赠科研通 2643346
什么是DOI,文献DOI怎么找? 1447285
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658953