Dynamic Loss Weighting for Multiorgan Segmentation in Medical Images

分割 加权 计算机科学 人工智能 基本事实 一致性(知识库) 模式识别(心理学) 自编码 深度学习 水准点(测量) 机器学习 大地测量学 医学 放射科 地理
作者
Youyi Song,Jeremy Yuen‐Chun Teoh,Kup‐Sze Choi,Jing Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:8
标识
DOI:10.1109/tnnls.2023.3243241
摘要

Deep neural networks often suffer from performance inconsistency for multiorgan segmentation in medical images; some organs are segmented far worse than others. The main reason might be organs with different levels of learning difficulty for segmentation mapping, due to variations such as size, texture complexity, shape irregularity, and imaging quality. In this article, we propose a principled class-reweighting algorithm, termed dynamic loss weighting, which dynamically assigns a larger loss weight to organs if they are discriminated as more difficult to learn according to the data and network's status, for forcing the network to learn from them more to maximally promote the performance consistency. This new algorithm uses an extra autoencoder to measure the discrepancy between the segmentation network's output and the ground truth and dynamically estimates the loss weight of organs per the contribution of the organ to the new updated discrepancy. It can capture the variation in organs' learning difficult during training, and it is neither sensitive to data's property nor dependent on human priors. We evaluate this algorithm in two multiorgan segmentation tasks: abdominal organs and head-neck structures, on publicly available datasets, with positive results obtained from extensive experiments which confirm the validity and effectiveness. Source codes are available at: https://github.com/YouyiSong/Dynamic-Loss-Weighting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xxx发布了新的文献求助10
1秒前
Sheart发布了新的文献求助10
2秒前
非哲发布了新的文献求助10
2秒前
翁怜晴发布了新的文献求助10
3秒前
yuan完成签到,获得积分10
3秒前
ldy发布了新的文献求助10
3秒前
田様应助Auh采纳,获得10
3秒前
4秒前
4秒前
搜集达人应助JABBA采纳,获得10
4秒前
宁宁完成签到,获得积分10
4秒前
bkagyin应助qwe采纳,获得10
4秒前
liu发布了新的文献求助10
4秒前
XiaoLiu应助Lee采纳,获得10
5秒前
5秒前
ydx发布了新的文献求助10
6秒前
6秒前
Akim应助yu采纳,获得10
6秒前
6秒前
7秒前
呆萌的傲旋关注了科研通微信公众号
7秒前
7秒前
小蘑菇应助点点采纳,获得10
9秒前
9秒前
9秒前
10秒前
XIA发布了新的文献求助20
10秒前
10秒前
英俊柠檬发布了新的文献求助10
10秒前
10秒前
lyy完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
慕青应助echoyao采纳,获得10
12秒前
lcx发布了新的文献求助10
13秒前
Akim应助qing1245采纳,获得10
13秒前
大个应助轻松不二采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562