亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HCTIRdeblur: A hybrid convolution-transformer network for single infrared image deblurring

去模糊 人工智能 计算机科学 计算机视觉 稳健性(进化) 图像复原 红外线的 模式识别(心理学) 特征(语言学) 图像处理 图像(数学) 光学 物理 生物化学 化学 语言学 哲学 基因
作者
Shi Yi,Li Li,Xi Liu,Junjie Li,Ling Chen
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:131: 104640-104640 被引量:4
标识
DOI:10.1016/j.infrared.2023.104640
摘要

Infrared images captured by mobile platforms often suffer image blurs such as defocus blur and motion blur, which seriously degrade the quality of infrared images. However, the existing image deblurring methods generally focused on visible image deblurring while failing to perform infrared image deblurring effectively, due to the infrared images with low resolution, lack of detailed textural information, and tend to fused objects with backgrounds when low-level temperature difference. To this end, this study proposed a novel end to end network for single infrared image blind deblurring. An encoder contains multiple hybrid convolution-transformer feature extraction blocks is designed to effectively extract inherent characteristics of infrared image. The bidirectional feature pyramid structured decoder with full scale connections is adopted to achieve fully reuse multi-stage features and reconstructed clear infrared images ideally. The multi-stage training strategy and a novel mixed loss function are introduced to speed up the convergence of training process and obtain better image deblurring performance. Moreover, a dataset dedicated to infrared images blind deblurring is constructed to facilitate the task of infrared image deblurring. Extensive ablation studies and comparison experiments have been conducted on the test set of the proposed infrared image deblurring dataset. The experimental results demonstrated the effectiveness of the proposed network structure and the superiority of the proposed network over other state of the arts deblurring methods. Finally, comparative experiment is conducted on real captured blurred infrared images and the results verified the superiority and robustness of the proposed network over other existing image deblurring methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6.1应助liuliu采纳,获得30
14秒前
19秒前
11发布了新的文献求助10
25秒前
友好绿柏发布了新的文献求助10
42秒前
小马甲应助dawn采纳,获得10
57秒前
1分钟前
dawn发布了新的文献求助10
1分钟前
善学以致用应助Fluoxtine采纳,获得10
1分钟前
黑鲨完成签到 ,获得积分10
1分钟前
Ava应助粗暴的坤采纳,获得10
1分钟前
瘦瘦的迎南完成签到 ,获得积分10
1分钟前
1分钟前
谷雨秋发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
J_Xu完成签到 ,获得积分10
2分钟前
所所应助凛玖niro采纳,获得10
2分钟前
2分钟前
凛玖niro发布了新的文献求助10
2分钟前
霖槿完成签到,获得积分10
2分钟前
2分钟前
十八完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
liuliu发布了新的文献求助30
4分钟前
4分钟前
烟花应助Li采纳,获得10
4分钟前
liuliu完成签到,获得积分20
4分钟前
4分钟前
5分钟前
ataybabdallah完成签到,获得积分10
5分钟前
5分钟前
5分钟前
开朗大雁完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587