ZnO with engineered surface defects as a competent photocatalyst for CO2 photoreduction into valuable fuels under simulated solar light irradiation

光催化 X射线光电子能谱 材料科学 化学工程 光致发光 吸附 纳米颗粒 纳米技术 光化学 催化作用 化学 有机化学 光电子学 冶金 工程类
作者
Rabiatul Aliah Mahmud,Khozema Ahmed Ali,Lutfi Kurnianditia Putri,Yoshitada Morikawa,Abdul Rahman Mohamed
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (3): 109637-109637 被引量:11
标识
DOI:10.1016/j.jece.2023.109637
摘要

Photocatalysis is one of the eco-friendly methods in greenhouse gases abatement by utilizing renewable resources such as sunlight. This study examined defective ZnO nanoparticles that serve as carbon dioxide (CO2) adsorption and activation sites in photocatalytic reactions. The defective ZnO nanoparticles were synthesized via a facile precipitation-hydrothermal method by only controlling the concentration of NaOH as the precipitating agent. The rough surface of ZnO were formed due to the heating treatment, where it conveniently removed the attached inorganic molecules on ZnO surfaces. The roughness surface of ZnO was observed by using Transmission Electron Microscopy (TEM) analysis, in which the pores with bright spot can be observed. Additionally, the defects originating from oxygen vacancies (VO), zinc interstitials (Zni) and carbonates groups (CO32−) was successfully optimized over variation of NaOH concentrations proven by Photoluminescence (PL) and X-Ray Photoelectron Spectroscopy (XPS) analysis. Here, 1 : 4 ZnO exhibited the highest CH4 yield (1.3 ×10-1 µmol) and 3-fold production than commercial ZnO (4.8 × 10-2 µmol). The reusability of 1 : 4 ZnO was demonstrated by conducting 4 cycles of stability test, which revealed a robust photocatalyst of 7.7% performance reduction after 4th cycle. A schematic mechanism pertaining to the novel defective ZnO nanoparticles in CO2 photoreduction to valuable fuels was proposed in this study, which undoubtedly will contribute a positive effect to industry’s long-term sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自信的伊发布了新的文献求助10
1秒前
Stanley发布了新的文献求助10
1秒前
wang发布了新的文献求助10
1秒前
1秒前
大鹏发布了新的文献求助50
1秒前
丘比特应助艺玲采纳,获得10
1秒前
hobowei发布了新的文献求助10
2秒前
梦里见陈情完成签到,获得积分10
2秒前
JJJ应助szh123采纳,获得10
2秒前
FFFFFFF应助细腻沅采纳,获得10
2秒前
ym发布了新的文献求助10
2秒前
Yn完成签到 ,获得积分10
3秒前
3秒前
秋季完成签到,获得积分10
4秒前
wwb完成签到,获得积分10
4秒前
张自信完成签到,获得积分10
5秒前
华仔应助VDC采纳,获得10
5秒前
嘟嘟完成签到,获得积分10
6秒前
卡卡完成签到,获得积分10
6秒前
6秒前
十三发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
甩看文献发布了新的文献求助10
7秒前
wang完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
LONG完成签到,获得积分10
9秒前
9秒前
甜蜜秋蝶完成签到,获得积分10
9秒前
10秒前
TT发布了新的文献求助10
11秒前
啊实打实发布了新的文献求助10
11秒前
yam001发布了新的文献求助30
12秒前
Stanley完成签到,获得积分10
12秒前
LONG发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762