Prediction of the sarcopenia in peritoneal dialysis using simple clinical information: A machine learning‐based model

肌萎缩 医学 生物电阻抗分析 握力 体质指数 腹膜透析 瘦体质量 内科学 体液 物理疗法 体重
作者
Jiaying Wu,Shuangxiang Lin,Jichao Guan,Xiujuan Wu,Miaojia Ding,Shuijuan Shen
出处
期刊:Seminars in Dialysis [Wiley]
卷期号:36 (5): 390-398 被引量:9
标识
DOI:10.1111/sdi.13131
摘要

Abstract Introduction Sarcopenia is associated with significant cardiovascular risk, and death in patients undergoing peritoneal dialysis (PD). Three tools are used for diagnosing sarcopenia. The evaluation of muscle mass requires dual energy X‐ray absorptiometry (DXA) or computed tomography (CT), which is labor‐intensive and relatively expensive. This study aimed to use simple clinical information to develop a machine learning (ML)‐based prediction model of PD sarcopenia. Methods According to the newly revised Asian Working Group for Sarcopenia (AWGS2019), patients were subjected to complete sarcopenia screening, including appendicular skeletal muscle mass, grip strength, and five‐time chair stand time test. Simple clinical information such as general information, dialysis‐related indices, irisin and other laboratory indices, and bioelectrical impedance analysis (BIA) data were collected. All data were randomly split into training (70%) and testing (30%) sets. Difference, correlation, univariate, and multivariate analyses were used to identify core features significantly associated with PD sarcopenia. Result 12 core features (C), namely, grip strength, body mass index (BMI), total body water value, irisin, extracellular water/total body water, fat‐free mass index, phase angle, albumin/globulin, blood phosphorus, total cholesterol, triglyceride, and prealbumin were excavated for model construction. Two ML models, the neural network (NN), and support vector machine (SVM) were selected with tenfold cross‐validation to determine the optimal parameter. The C‐SVM model showed a higher area under the curve (AUC) of 0.82 (95% confidence interval [CI]: 0.67–1.00), with a highest specificity of 0.96, sensitivity of 0.91, positive predictive value (PPV) of 0.96, and negative predictive value (NPV) of 0.91. Conclusion The ML model effectively predicted PD sarcopenia and has clinical potential to be used as a convenient sarcopenia screening tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
树树完成签到,获得积分10
1秒前
Meteor636完成签到 ,获得积分10
1秒前
HSA发布了新的文献求助10
2秒前
2秒前
ztt完成签到,获得积分10
2秒前
读者发布了新的文献求助10
4秒前
LIU发布了新的文献求助10
5秒前
英勇的鹤完成签到,获得积分10
5秒前
taozhiqi完成签到 ,获得积分10
5秒前
飞云发布了新的文献求助10
6秒前
阿维发布了新的文献求助10
8秒前
HHHZZZ完成签到,获得积分10
8秒前
ztt发布了新的文献求助10
9秒前
maybe完成签到,获得积分10
10秒前
CipherSage应助wss采纳,获得10
10秒前
深情的幼南完成签到,获得积分10
11秒前
七米日光完成签到 ,获得积分10
13秒前
安静问梅完成签到,获得积分10
15秒前
汤浩宏发布了新的文献求助10
16秒前
FashionBoy应助危机的巧凡采纳,获得10
17秒前
18秒前
20秒前
22秒前
fjmelite完成签到 ,获得积分10
22秒前
orixero应助LIU采纳,获得10
23秒前
nanaki发布了新的文献求助10
24秒前
香蕉觅云应助你好采纳,获得10
24秒前
25秒前
yuchangkun发布了新的文献求助10
25秒前
26秒前
bzc完成签到,获得积分10
26秒前
读者发布了新的文献求助10
27秒前
29秒前
30秒前
30秒前
漂亮孤兰完成签到 ,获得积分10
30秒前
高霍利发布了新的文献求助10
31秒前
31秒前
31秒前
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997769
求助须知:如何正确求助?哪些是违规求助? 3537294
关于积分的说明 11271231
捐赠科研通 3276455
什么是DOI,文献DOI怎么找? 1807040
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982