Prediction of the sarcopenia in peritoneal dialysis using simple clinical information: A machine learning‐based model

肌萎缩 医学 生物电阻抗分析 握力 体质指数 腹膜透析 瘦体质量 内科学 体液 物理疗法 体重
作者
Jiaying Wu,Shuangxiang Lin,Jichao Guan,Xiujuan Wu,Miaojia Ding,Shuijuan Shen
出处
期刊:Seminars in Dialysis [Wiley]
卷期号:36 (5): 390-398 被引量:4
标识
DOI:10.1111/sdi.13131
摘要

Abstract Introduction Sarcopenia is associated with significant cardiovascular risk, and death in patients undergoing peritoneal dialysis (PD). Three tools are used for diagnosing sarcopenia. The evaluation of muscle mass requires dual energy X‐ray absorptiometry (DXA) or computed tomography (CT), which is labor‐intensive and relatively expensive. This study aimed to use simple clinical information to develop a machine learning (ML)‐based prediction model of PD sarcopenia. Methods According to the newly revised Asian Working Group for Sarcopenia (AWGS2019), patients were subjected to complete sarcopenia screening, including appendicular skeletal muscle mass, grip strength, and five‐time chair stand time test. Simple clinical information such as general information, dialysis‐related indices, irisin and other laboratory indices, and bioelectrical impedance analysis (BIA) data were collected. All data were randomly split into training (70%) and testing (30%) sets. Difference, correlation, univariate, and multivariate analyses were used to identify core features significantly associated with PD sarcopenia. Result 12 core features (C), namely, grip strength, body mass index (BMI), total body water value, irisin, extracellular water/total body water, fat‐free mass index, phase angle, albumin/globulin, blood phosphorus, total cholesterol, triglyceride, and prealbumin were excavated for model construction. Two ML models, the neural network (NN), and support vector machine (SVM) were selected with tenfold cross‐validation to determine the optimal parameter. The C‐SVM model showed a higher area under the curve (AUC) of 0.82 (95% confidence interval [CI]: 0.67–1.00), with a highest specificity of 0.96, sensitivity of 0.91, positive predictive value (PPV) of 0.96, and negative predictive value (NPV) of 0.91. Conclusion The ML model effectively predicted PD sarcopenia and has clinical potential to be used as a convenient sarcopenia screening tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助dou采纳,获得10
1秒前
战神幽默发布了新的文献求助10
1秒前
Owen应助konka采纳,获得10
1秒前
Zhang发布了新的文献求助10
2秒前
在水一方应助研友_祝鬼神采纳,获得10
2秒前
2秒前
缥缈易烟发布了新的文献求助10
4秒前
充电宝应助SPark采纳,获得10
4秒前
5秒前
平淡广山完成签到,获得积分10
5秒前
zz发布了新的文献求助10
6秒前
monicaj完成签到 ,获得积分10
6秒前
李健应助123采纳,获得10
6秒前
7秒前
lemonhow发布了新的文献求助10
7秒前
8秒前
研友_VZG7GZ应助章鱼采纳,获得10
8秒前
8秒前
9秒前
9秒前
biye6发布了新的文献求助10
9秒前
ShuV发布了新的文献求助10
9秒前
研友_38KgB8发布了新的文献求助10
9秒前
个性仙人掌完成签到,获得积分10
9秒前
哈哈发布了新的文献求助10
10秒前
kkkk完成签到,获得积分10
10秒前
廖元枫发布了新的文献求助10
10秒前
顾然发布了新的文献求助10
11秒前
11秒前
aixuexi*完成签到,获得积分10
12秒前
苹果易真完成签到,获得积分20
12秒前
12秒前
12秒前
香蕉觅云应助王京华采纳,获得10
12秒前
陵亚未发布了新的文献求助10
13秒前
13秒前
一一发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309005
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508619
捐赠科研通 2617432
什么是DOI,文献DOI怎么找? 1430073
科研通“疑难数据库(出版商)”最低求助积分说明 664018
邀请新用户注册赠送积分活动 649234