数学
本征函数
上下界
投影(关系代数)
拉普拉斯算子
特征向量
有限元法
应用数学
规范(哲学)
先验与后验
数学分析
算法
认识论
法学
哲学
物理
热力学
量子力学
政治学
作者
Xuefeng Liu,Tomáš Vejchodský
标识
DOI:10.1016/j.cam.2023.115164
摘要
For conforming finite element approximations of the Laplacian eigenfunctions, a fully computable guaranteed error bound in the L2 norm sense is proposed. The bound is based on the a priori error estimate for the Galerkin projection of the conforming finite element method, and has an optimal speed of convergence for the eigenfunctions with the worst regularity. The resulting error estimate bounds the distance of spaces of exact and approximate eigenfunctions and, hence, is robust even in the case of multiple and tightly clustered eigenvalues. The accuracy of the proposed bound is illustrated by numerical examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI