已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance analysis of machine learning algorithms and screening formulae forβ–thalassemia trait screening of Indian antenatal women

算法 机器学习 人工智能 数学 接收机工作特性 计算机科学 统计 医学
作者
Reena Das,Sarkaft Saleh,Izabela Nielsen,Anilava Kaviraj,Prashant Sharma,Kartick Dey,Subrata Saha
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:167: 104866-104866 被引量:9
标识
DOI:10.1016/j.ijmedinf.2022.104866
摘要

Currently, more than forty discrimination formulae based on red blood cell (RBC) parameters and some supervised machine learning algorithms (MLAs) have been recommended for β-thalassemia trait (BTT) screening. The present study was aimed to evaluate and compare the performance of 26 such formulae and 13 MLAs on antenatal woman data with a recently developed formula SCSBTT, which is available for evaluation in over seventy countries as an Android app, called SUSOKA [16]. A diagnostic database of 2942 antenatal females were collected from PGIMER, Chandigarh, India and was used for this analysis. The data set consists of hypochromic microcytic anemia, BTT, Hemoglobin E trait, double heterozygote for Hemoglobin S and BTT, heterozygote for Hemoglobin D Punjab and normal subjects. Performance of the formulae and the MLAs were assessed by Sensitivity, Specificity, Youden's Index, and AUC-ROC measures. A final recommendation was made from the ranking obtained through two Multiple Criteria Decision-Making (MCDM) techniques, namely, Simultaneous Evaluation of Criteria and Alternatives (SECA) and TOPSIS. It was observed that Extreme Learning Machine (ELM) and Gradient Boosting Classifier (GBC) showed maximum Youden's index and AUC-ROC measures compared to all discriminating formulae. Sensitivity remains maximum for SCSBTT. K-means clustering and the ranking from MCDM methods show that SCSBTT, Shine & Lal and Ravanbakhsh-F4 formula ensures higher performance among all formulae. The discriminant power of some MLAs and formulae was found considerably lower than that reported in original studies. Comparative information on MLAs can aid researchers in developing new discriminating formulae that simultaneously ensure higher sensitivity and specificity. More multi-centric verification of the formulae on heterogeneous data is indispensable. SCSBTT and Shine & Lal formula, and ELM and GBC are recommended for screening BTT based on MCDM. SCSBTT can be used with certainty as a tangible cost-saving screening tool for mass screening for antenatal women in India and other countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助绍成采纳,获得10
1秒前
范丞丞完成签到 ,获得积分10
1秒前
2秒前
十三完成签到 ,获得积分10
2秒前
3秒前
棉花糖完成签到 ,获得积分10
3秒前
3秒前
Jasper应助小新爱看文献采纳,获得10
3秒前
馒头完成签到 ,获得积分10
3秒前
冰凝完成签到,获得积分10
4秒前
春色未软旧苔痕完成签到 ,获得积分10
4秒前
insomnia417完成签到,获得积分0
4秒前
田様应助HHHH采纳,获得10
5秒前
沈惠映完成签到 ,获得积分10
5秒前
小白菜完成签到 ,获得积分10
5秒前
DreamRunner0410完成签到 ,获得积分10
7秒前
优雅夕阳完成签到 ,获得积分10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
杳鸢应助科研通管家采纳,获得30
8秒前
SC完成签到,获得积分10
8秒前
Na发布了新的文献求助10
8秒前
Benjamin完成签到 ,获得积分10
8秒前
我爱康康文献完成签到 ,获得积分10
9秒前
燧人氏完成签到 ,获得积分10
9秒前
a.s完成签到 ,获得积分0
10秒前
AM完成签到 ,获得积分10
10秒前
桐桐应助无物采纳,获得10
12秒前
Na完成签到,获得积分20
13秒前
嗯哼应助小凯采纳,获得20
17秒前
17秒前
年轻新晴完成签到,获得积分10
19秒前
19秒前
无物发布了新的文献求助10
23秒前
绍成发布了新的文献求助10
24秒前
24秒前
syl完成签到 ,获得积分0
25秒前
种喜欢的花完成签到 ,获得积分10
26秒前
我是老大应助飞快的孱采纳,获得10
27秒前
AM完成签到 ,获得积分10
27秒前
何升发布了新的文献求助10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310970
求助须知:如何正确求助?哪些是违规求助? 2943774
关于积分的说明 8516369
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431916
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649777

今日热心研友

杳鸢
30
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10