已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Design and Evaluation of Optimal Free Trials

自相残杀 计算机科学 盈利能力指数 收入 估计员 倾向得分匹配 计量经济学 营销 精算学 经济 业务 统计 数学 财务
作者
Hema Yoganarasimhan,Ebrahim Barzegary,Abhishek Pani
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (6): 3220-3240 被引量:32
标识
DOI:10.1287/mnsc.2022.4507
摘要

Free trial promotions are a commonly used customer acquisition strategy in the Software as a Service industry. We use data from a large-scale field experiment to study the effect of trial length on customer-level outcomes. We find that, on average, shorter trial lengths (surprisingly) maximize customer acquisition, retention, and profitability. Next, we examine the mechanism through which trial length affects conversions and rule out the demand cannibalization theory, find support for the consumer learning hypothesis, and show that long stretches of inactivity at the end of the trial are associated with lower conversions. We then develop a personalized targeting policy that allocates the optimal treatment to each user based on individual-level predictions of the outcome of interest (e.g., subscriptions) using a lasso model. We evaluate this policy using the inverse propensity score reward estimator and show that it leads to 6.8% improvement in subscription compared with a uniform 30-days for-all policy. It also performs well on long-term customer retention and revenues in our setting. Further analysis of this policy suggests that skilled and experienced users are more likely to benefit from longer trials, whereas beginners are more responsive to shorter trials. Finally, we show that personalized policies do not always outperform uniform policies, and we should be careful when designing and evaluating personalized policies. In our setting, personalized policies based on other methods (e.g., causal forests, random forests) perform worse than a simple uniform policy that assigns a short trial length to all users. This paper was accepted by Duncan Simester, marketing. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2022.4507 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TKTATO发布了新的文献求助10
3秒前
5秒前
8秒前
興崋完成签到 ,获得积分10
9秒前
11秒前
Dali完成签到 ,获得积分10
11秒前
11秒前
13秒前
woshizhengde发布了新的文献求助10
14秒前
菲1208完成签到,获得积分10
16秒前
18秒前
朱文韬发布了新的文献求助10
19秒前
赘婿应助PrayOne采纳,获得10
21秒前
King丶惠忍完成签到,获得积分10
21秒前
22秒前
握月担风完成签到,获得积分10
22秒前
Leif完成签到 ,获得积分0
23秒前
wei发布了新的文献求助10
24秒前
科研通AI2S应助陪你长大采纳,获得10
24秒前
希望天下0贩的0应助Kashing采纳,获得30
25秒前
27秒前
34秒前
35秒前
Alicia完成签到 ,获得积分10
35秒前
张张完成签到,获得积分20
36秒前
39秒前
景__完成签到 ,获得积分10
41秒前
张张发布了新的文献求助10
42秒前
wei完成签到,获得积分10
42秒前
44秒前
lulululululu发布了新的文献求助10
47秒前
乐乐应助张张采纳,获得10
48秒前
50秒前
52秒前
奥拉夫完成签到,获得积分10
54秒前
第七兵团司令完成签到,获得积分10
55秒前
ceeray23应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
orixero应助科研通管家采纳,获得10
56秒前
香蕉谷芹应助科研通管家采纳,获得20
56秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455593
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022781
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502690
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387