A new class of robust and predefined-time consensus protocol based on noise-tolerant ZNN models

有界函数 计算机科学 稳健性(进化) 控制理论(社会学) 符号函数 人工神经网络 沉降时间 噪音(视频) 上下界 数学优化 数学 人工智能 控制工程 控制(管理) 阶跃响应 数学分析 生物化学 化学 工程类 图像(数学) 基因
作者
Jiajie Luo,Lin Xiao,Penglin Cao,Xiaopeng Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:145: 110550-110550
标识
DOI:10.1016/j.asoc.2023.110550
摘要

Zeroing neural network (ZNN) is a powerful tool in designing suitable control schemes since it is a systematic approach. It has been used in fields like robot manipulator control and tracking control, but few researchers have investigated the possible application of the ZNN in multi-agent systems. Based on the elegant zeroing neural network (ZNN) scheme, in this paper, two novel noise-tolerant ZNN (NTZNN) models are proposed to achieve consensus, which is a crucial problem in the field of cooperative control of the multi-agent systems. Besides, the novel noise-tolerant sign-bi-power (NTSBP) and noise-tolerant sign-exp-power (NTSEP) activation functions are used in this study. The NTZNN models activated by NTSBP and NTSEP are more robust than traditional ZNN models activated by the traditional sign-bi-power (SBP) and sign-exp-power (SEP) activation functions, respectively. The detailed mathematical analysis is presented to prove the robustness and predefined-time stability of the NTZNN models, and the upper bounds of the settling-time function are also estimated by a novel method based on improper integral. Combining the traditional Polyakov method and the proposed method based on improper integral, we can estimate the upper bounds of the settling-time function in a more precise way. Then, the robustness of the NTZNN models under both dynamic bounded vanishing noise and dynamic bounded non-vanishing noise is further evaluated by numerical experiments, and results show that the models are effective at both situations. We also present several practical examples of formation control, and parallel experiments are provided to further demonstrate that our results are general. All the theoretical and numerical verification results show that the NTZNN models are more robust than the traditional ZNN models activated by SBP or SEP activation functions, and it is also predefined-time stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一修完成签到,获得积分20
1秒前
阳光白开水完成签到,获得积分10
1秒前
凉凉应助hindbind采纳,获得10
1秒前
wx发布了新的文献求助10
3秒前
西瓜太郎君完成签到,获得积分10
3秒前
汉堡包应助MissF采纳,获得10
3秒前
3秒前
hhh发布了新的文献求助10
4秒前
所所应助WINK采纳,获得10
4秒前
5秒前
宁阿霜发布了新的文献求助20
5秒前
5秒前
5秒前
7秒前
7秒前
7秒前
7秒前
7秒前
wyp完成签到,获得积分10
8秒前
LUK_完成签到,获得积分10
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
mozhizhi发布了新的文献求助10
9秒前
9秒前
9秒前
老阎应助科研通管家采纳,获得30
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
高高发布了新的文献求助20
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412