已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new class of robust and predefined-time consensus protocol based on noise-tolerant ZNN models

有界函数 计算机科学 稳健性(进化) 控制理论(社会学) 符号函数 人工神经网络 沉降时间 噪音(视频) 上下界 数学优化 数学 人工智能 控制工程 控制(管理) 阶跃响应 数学分析 生物化学 化学 工程类 图像(数学) 基因
作者
Jiajie Luo,Lin Xiao,Penglin Cao,Xiaopeng Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:145: 110550-110550
标识
DOI:10.1016/j.asoc.2023.110550
摘要

Zeroing neural network (ZNN) is a powerful tool in designing suitable control schemes since it is a systematic approach. It has been used in fields like robot manipulator control and tracking control, but few researchers have investigated the possible application of the ZNN in multi-agent systems. Based on the elegant zeroing neural network (ZNN) scheme, in this paper, two novel noise-tolerant ZNN (NTZNN) models are proposed to achieve consensus, which is a crucial problem in the field of cooperative control of the multi-agent systems. Besides, the novel noise-tolerant sign-bi-power (NTSBP) and noise-tolerant sign-exp-power (NTSEP) activation functions are used in this study. The NTZNN models activated by NTSBP and NTSEP are more robust than traditional ZNN models activated by the traditional sign-bi-power (SBP) and sign-exp-power (SEP) activation functions, respectively. The detailed mathematical analysis is presented to prove the robustness and predefined-time stability of the NTZNN models, and the upper bounds of the settling-time function are also estimated by a novel method based on improper integral. Combining the traditional Polyakov method and the proposed method based on improper integral, we can estimate the upper bounds of the settling-time function in a more precise way. Then, the robustness of the NTZNN models under both dynamic bounded vanishing noise and dynamic bounded non-vanishing noise is further evaluated by numerical experiments, and results show that the models are effective at both situations. We also present several practical examples of formation control, and parallel experiments are provided to further demonstrate that our results are general. All the theoretical and numerical verification results show that the NTZNN models are more robust than the traditional ZNN models activated by SBP or SEP activation functions, and it is also predefined-time stable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倒影完成签到 ,获得积分10
1秒前
4秒前
爆米花应助别烦采纳,获得10
4秒前
5秒前
健忘煎蛋发布了新的文献求助10
10秒前
10秒前
雪糕发布了新的文献求助10
11秒前
玖玖完成签到,获得积分10
11秒前
jiujiuhuang完成签到,获得积分10
13秒前
天真的不凡完成签到 ,获得积分10
14秒前
YY发布了新的文献求助20
16秒前
无风完成签到 ,获得积分10
17秒前
烂漫的煎饼完成签到 ,获得积分10
18秒前
19秒前
19秒前
Alusia完成签到 ,获得积分10
22秒前
Esther发布了新的文献求助10
24秒前
hochorsin发布了新的文献求助10
24秒前
冯冯完成签到 ,获得积分10
26秒前
27秒前
29秒前
无风完成签到 ,获得积分10
31秒前
羊羊发布了新的文献求助10
32秒前
Crrr发布了新的文献求助10
37秒前
38秒前
科研通AI2S应助leslie采纳,获得10
39秒前
40秒前
nihao发布了新的文献求助10
41秒前
41秒前
微笑的鱼发布了新的文献求助10
41秒前
ting完成签到,获得积分10
41秒前
zp发布了新的文献求助10
43秒前
WUYANG发布了新的文献求助10
45秒前
QT发布了新的文献求助10
45秒前
sho完成签到,获得积分10
46秒前
46秒前
不安青牛应助科研通管家采纳,获得10
47秒前
不安青牛应助科研通管家采纳,获得10
47秒前
不安青牛应助科研通管家采纳,获得10
47秒前
852应助科研通管家采纳,获得10
47秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162031
求助须知:如何正确求助?哪些是违规求助? 2813164
关于积分的说明 7898852
捐赠科研通 2472153
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129