Smart and Selective Gas Sensor System Empowered With Machine Learning Over IoT Platform

计算机科学 无线传感器网络 嵌入式系统 云计算 微控制器 实时计算 互联网 无线 移植 Android(操作系统) 蓝牙 计算机网络 操作系统 软件
作者
Snehanjan Acharyya,Abhishek Ghosh,Sudip Nag,S. B. Majumder,Prasanta Kumar Guha
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4218-4226 被引量:12
标识
DOI:10.1109/jiot.2023.3298633
摘要

Simple, accurate, portable, and selective gas sensors with autonomous, remote, and real-time access have become a requisite in various fields of applications. In this paper, we report the development of a stand-alone and selective gas sensor system incorporating a single resistive sensor with wireless monitoring and internet connectivity. The sensor is fabricated in-house with platinum decorated tin-oxide hollow-spheres as the sensing material, which exhibits a prominent response towards the tested volatile organic compounds (VOCs) at different concentrations. The intelligence in terms of accurate identification of VOCs and their concentration is attained by employing a machine learning tool based on deep neural network. The applied model displays an average accuracy of 96.43% with a fast prediction speed of 310ls, allowing a real-time recognition capability. The wireless connectivity is established utilizing a low-power microcontroller board and a Bluetooth module. The real-time data is made available for the users over an Android-based mobile application and a webpage while utilizing cloud services through the internet. The implemented system is successfully experimented with and validated under different test conditions that verify the whole platform. Further, the sensor system can be potentially applied to a remote application without needing any manual involvement. The demonstrated work with an internet-of-things (IoT) paradigm strengthens the next-generation gas sensing technology for developing smart, selective, and real-time gas sensor systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光起眸发布了新的文献求助10
刚刚
共享精神应助unicornmed采纳,获得10
1秒前
1秒前
法外潮湿宝贝完成签到 ,获得积分10
1秒前
石狗西完成签到 ,获得积分10
1秒前
2秒前
香椿炒鸡子er完成签到,获得积分10
2秒前
Nitric_Oxide应助yyyyxxxg采纳,获得10
2秒前
Olivia完成签到 ,获得积分10
3秒前
seaya发布了新的文献求助10
4秒前
liu应助yyyyxxxg采纳,获得10
5秒前
清漪发布了新的文献求助50
5秒前
潘朒朒完成签到,获得积分20
5秒前
222完成签到,获得积分20
6秒前
白小泽发布了新的文献求助10
9秒前
吲哚好呀发布了新的文献求助10
9秒前
Nitric_Oxide应助gulu采纳,获得10
10秒前
11秒前
12秒前
科研通AI2S应助Answer采纳,获得10
13秒前
JamesPei应助冷静无声采纳,获得10
13秒前
14秒前
gj2221423发布了新的文献求助10
15秒前
SciGPT应助标致的乐驹采纳,获得10
15秒前
15秒前
222发布了新的文献求助20
16秒前
小二郎应助高兴的香薇采纳,获得10
16秒前
17秒前
丘比特应助司徒无剑采纳,获得10
17秒前
ruanyh发布了新的文献求助10
17秒前
思源应助黄老板采纳,获得10
17秒前
dui完成签到,获得积分10
18秒前
Orange应助淡定的往事采纳,获得10
19秒前
Yang22完成签到,获得积分10
19秒前
duan完成签到,获得积分10
19秒前
明理萃完成签到 ,获得积分10
19秒前
田様应助单薄的板凳采纳,获得10
20秒前
21秒前
香蕉觅云应助嗑瓜子传奇采纳,获得10
21秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825