Generative Adversarial Matrix Completion Network based on Multi-Source Data Fusion for miRNA–Disease Associations Prediction

计算机科学 相似性(几何) 机器学习 人工智能 任务(项目管理) 传感器融合 鉴定(生物学) 对抗制 数据挖掘 领域(数学分析) 生成对抗网络 矩阵完成 生成语法 计算生物学 深度学习 数学 生物 图像(数学) 数学分析 植物 物理 管理 量子力学 高斯分布 经济
作者
Shudong Wang,Yunyin Li,Yuanyuan Zhang,Shanchen Pang,Sibo Qiao,Y. Zhang,Fuyu Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5) 被引量:4
标识
DOI:10.1093/bib/bbad270
摘要

Abstract Numerous biological studies have shown that considering disease-associated micro RNAs (miRNAs) as potential biomarkers or therapeutic targets offers new avenues for the diagnosis of complex diseases. Computational methods have gradually been introduced to reveal disease-related miRNAs. Considering that previous models have not fused sufficiently diverse similarities, that their inappropriate fusion methods may lead to poor quality of the comprehensive similarity network and that their results are often limited by insufficiently known associations, we propose a computational model called Generative Adversarial Matrix Completion Network based on Multi-source Data Fusion (GAMCNMDF) for miRNA–disease association prediction. We create a diverse network connecting miRNAs and diseases, which is then represented using a matrix. The main task of GAMCNMDF is to complete the matrix and obtain the predicted results. The main innovations of GAMCNMDF are reflected in two aspects: GAMCNMDF integrates diverse data sources and employs a nonlinear fusion approach to update the similarity networks of miRNAs and diseases. Also, some additional information is provided to GAMCNMDF in the form of a ‘hint’ so that GAMCNMDF can work successfully even when complete data are not available. Compared with other methods, the outcomes of 10-fold cross-validation on two distinct databases validate the superior performance of GAMCNMDF with statistically significant results. It is worth mentioning that we apply GAMCNMDF in the identification of underlying small molecule-related miRNAs, yielding outstanding performance results in this specific domain. In addition, two case studies about two important neoplasms show that GAMCNMDF is a promising prediction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助张喜喜采纳,获得10
1秒前
gomm发布了新的文献求助10
1秒前
超级的纸鹤完成签到,获得积分20
1秒前
烂漫白桃发布了新的文献求助10
2秒前
ww发布了新的文献求助10
4秒前
每天我都睡得好完成签到 ,获得积分10
5秒前
6秒前
善学以致用应助郄建茹采纳,获得10
7秒前
7秒前
11秒前
顾矜应助大侦探皮卡丘采纳,获得10
11秒前
烟花应助HJJHJH采纳,获得10
12秒前
jjjdcjcj完成签到,获得积分10
12秒前
小青虫发布了新的文献求助10
13秒前
14秒前
情怀应助威武大将军采纳,获得10
14秒前
15秒前
Orange应助祈凛采纳,获得10
15秒前
18秒前
18秒前
希望天下0贩的0应助好好采纳,获得10
19秒前
judy完成签到 ,获得积分10
20秒前
21秒前
22秒前
23秒前
24秒前
25秒前
26秒前
郄建茹发布了新的文献求助10
26秒前
wwwwppp完成签到,获得积分10
27秒前
28秒前
冷艳广山发布了新的文献求助20
28秒前
YataMisaki发布了新的文献求助10
28秒前
31秒前
好好发布了新的文献求助10
32秒前
科目三应助哈哈哈哈哈不采纳,获得10
32秒前
勤恳的茗茗完成签到,获得积分10
33秒前
大侦探皮卡丘完成签到,获得积分10
34秒前
34秒前
丘比特应助汪格森采纳,获得10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425