Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design

计算机科学 药物发现 药物开发 制药工业 风险分析(工程) 人工智能 药品 数据科学 医学 药理学 生物信息学 生物
作者
Lalitkumar K. Vora,Amol D. Gholap,Keshava Jetha,Thakur Raghu Raj Singh,Hetvi K. Solanki,Vivek P. Chavda
出处
期刊:Pharmaceutics [MDPI AG]
卷期号:15 (7): 1916-1916 被引量:279
标识
DOI:10.3390/pharmaceutics15071916
摘要

Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze extensive biological data, including genomics and proteomics, researchers can identify disease-associated targets and predict their interactions with potential drug candidates. This enables a more efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug approvals. Furthermore, AI can contribute to reducing development costs by optimizing research and development processes. Machine learning algorithms assist in experimental design and can predict the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization and optimization of lead compounds, reducing the need for extensive and costly animal testing. Personalized medicine approaches can be facilitated through AI algorithms that analyze real-world patient data, leading to more effective treatment outcomes and improved patient adherence. This comprehensive review explores the wide-ranging applications of AI in drug discovery, drug delivery dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics (PK/PD) studies. This review provides an overview of various AI-based approaches utilized in pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued investment in and exploration of AI in the pharmaceutical industry offer exciting prospects for enhancing drug development processes and patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助动听的刚采纳,获得10
1秒前
2秒前
李安全完成签到,获得积分10
3秒前
华仔应助壹号采纳,获得10
3秒前
3秒前
深情黑米完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
顺利兰完成签到 ,获得积分10
5秒前
7秒前
莹66发布了新的文献求助20
7秒前
8秒前
8秒前
DK-kuz发布了新的文献求助10
9秒前
北夏完成签到 ,获得积分10
9秒前
深情黑米发布了新的文献求助30
9秒前
大模型应助实验狗采纳,获得10
9秒前
fengsewangjing完成签到,获得积分10
10秒前
10秒前
11秒前
xxx发布了新的文献求助10
11秒前
11秒前
14秒前
所所应助lovelife采纳,获得10
14秒前
同城代打发布了新的文献求助10
16秒前
小蘑菇应助优美语风采纳,获得10
17秒前
17秒前
怕黑寒烟发布了新的文献求助10
17秒前
超级朋友发布了新的文献求助10
17秒前
18秒前
songguodong完成签到,获得积分10
18秒前
丰富的芯完成签到,获得积分10
19秒前
19秒前
小二郎应助Polytide采纳,获得10
21秒前
JamesPei应助快乐酒窝采纳,获得10
22秒前
Xide发布了新的文献求助10
22秒前
TIGun发布了新的文献求助10
22秒前
ceeray23应助番茄采纳,获得20
22秒前
善学以致用应助南北采纳,获得10
22秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434089
求助须知:如何正确求助?哪些是违规求助? 3031323
关于积分的说明 8941651
捐赠科研通 2719262
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689427
邀请新用户注册赠送积分活动 685580