清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development, validation, and evaluation of a deep learning model to screen cyclin-dependent kinase 12 inhibitors in cancers

生物信息学 激酶 细胞周期蛋白依赖激酶 药物发现 虚拟筛选 计算生物学 极光激酶 药物开发 化学 药品 生物信息学 生物 药理学 细胞 细胞周期 生物化学 基因
作者
Tingyu Wen,Jun Wang,Ruiqiang Lu,Shuoyan Tan,Pengyong Li,Xiaojun Yao,Huanxiang Liu,Zongbi Yi,Lixi Li,Shuning Liu,Peng Gao,Haili Qian,Guotong Xie,Fei Ma
出处
期刊:European journal of medicinal chemistry [Elsevier]
卷期号:250: 115199-115199 被引量:3
标识
DOI:10.1016/j.ejmech.2023.115199
摘要

Deep learning-based in silico alternatives have been demonstrated to be of significant importance in the acceleration of the drug discovery process and enhancement of success rates. Cyclin-dependent kinase 12 (CDK12) is a transcription-related cyclin-dependent kinase that may act as a biomarker and therapeutic target for cancers. However, currently, there is no high selective CDK12 inhibitor in clinical development and the identification of new specific CDK12 inhibitors has become increasingly challenging due to their similarity with CDK13. In this study, we developed a virtual screening workflow that combines deep learning with virtual screening tools and can be applied rapidly to millions of molecules. We designed a Transformer architecture Drug-Target Interaction (DTI) model with dual-branched self-supervised pre-trained molecular graph models and protein sequence models. Our predictive model produced satisfactory predictions for various targets, including CDK12, with several novel hits. We screened a large compound library consisting of 4.5 million drug-like molecules and recommended a list of potential CDK12 inhibitors for further experimental testing. In kinase assay, compared to the positive CDK12 inhibitor THZ531, the compounds CICAMPA-01, 02, 03 displayed more effective inhibition of CDK12, up to three times as much as THZ531. The compounds CICAMPA-03, 05, 04, 07 showed less inhibition of CDK13 compare to THZ531. In vitro, the IC50 of CICAMPA-01, 04, 05, 06, 09 was less than 3 μM in the HER2 positive CDK12 amplification breast cancer cell line BT-474. Overall, this study provides a highly efficient and end-to-end deep learning protocol, in conjunction with molecular docking, for discovering CDK12 inhibitors in cancers. Additionally, we disclose five novel CDK12 inhibitors. These results may accelerate the discovery of novel chemical-class drugs for cancer treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微卫星不稳定完成签到 ,获得积分10
8秒前
我是笨蛋完成签到 ,获得积分10
27秒前
科研通AI5应助科研通管家采纳,获得10
45秒前
50秒前
月儿完成签到 ,获得积分10
1分钟前
震动的沉鱼完成签到 ,获得积分10
1分钟前
岂曰无衣完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
Picopy完成签到,获得积分10
3分钟前
林夕完成签到 ,获得积分10
3分钟前
woods完成签到,获得积分10
3分钟前
3分钟前
juan完成签到 ,获得积分10
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
打打应助afanda采纳,获得10
6分钟前
wwe完成签到,获得积分10
6分钟前
成社长完成签到,获得积分10
6分钟前
最美夕阳红完成签到 ,获得积分10
6分钟前
和谐的夏岚完成签到 ,获得积分10
8分钟前
田様应助成社长采纳,获得10
8分钟前
辉辉完成签到 ,获得积分10
9分钟前
归海浩阑发布了新的文献求助50
9分钟前
缥缈雍应助科研通管家采纳,获得10
10分钟前
科研通AI5应助科研通管家采纳,获得10
10分钟前
Milo完成签到,获得积分10
11分钟前
奋斗机器猫完成签到 ,获得积分10
12分钟前
研友_nxw2xL完成签到,获得积分10
12分钟前
奶糖喵完成签到 ,获得积分10
12分钟前
muriel完成签到,获得积分10
12分钟前
斯文败类应助科研通管家采纳,获得10
12分钟前
科研通AI5应助科研通管家采纳,获得10
12分钟前
Jasper应助科研通管家采纳,获得10
12分钟前
13分钟前
msirtx完成签到,获得积分10
13分钟前
gszy1975完成签到,获得积分10
13分钟前
高大书易完成签到 ,获得积分10
14分钟前
14分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566642
求助须知:如何正确求助?哪些是违规求助? 3139387
关于积分的说明 9431679
捐赠科研通 2840219
什么是DOI,文献DOI怎么找? 1560981
邀请新用户注册赠送积分活动 730121
科研通“疑难数据库(出版商)”最低求助积分说明 717843