Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel

分解水 制氢 纳米材料 纳米技术 光催化 材料科学 光催化分解水 半导体 太阳能 氢燃料 化石燃料 能量载体 环境污染 催化作用 环境科学 化学 光电子学 废物管理 工程类 环境保护 有机化学 电气工程 生物化学
作者
Muhammad Mohsin,Tehmeena Ishaq,Ijaz Ahmad Bhatti,Maryam Maryam,Asim Jilani,Ammar A. Melaibari,Nidal H. Abu‐Hamdeh
出处
期刊:Nanomaterials [MDPI AG]
卷期号:13 (3): 546-546 被引量:60
标识
DOI:10.3390/nano13030546
摘要

Nanomaterials have attracted attention for application in photocatalytic hydrogen production because of their beneficial properties such as high specific surface area, attractive morphology, and high light absorption. Furthermore, hydrogen is a clean and green source of energy that may help to resolve the existing energy crisis and increasing environmental pollution caused by the consumption of fossil fuels. Among various hydrogen production methods, photocatalytic water splitting is most significant because it utilizes solar light, a freely available energy source throughout the world, activated via semiconductor nanomaterial catalysts. Various types of photocatalysts are developed for this purpose, including carbon-based and transition-metal-based photocatalysts, and each has its advantages and disadvantages. The present review highlights the basic principle of water splitting and various techniques such as the thermochemical process, electrocatalytic process, and direct solar water splitting to enhance hydrogen production. Moreover, modification strategies such as band gap engineering, semiconductor alloys, and multiphoton photocatalysts have been reviewed. Furthermore, the Z- and S-schemes of heterojunction photocatalysts for water splitting were also reviewed. Ultimately, the strategies for developing efficient, practical, highly efficient, and novel visible-light-harvesting photocatalysts will be discussed, in addition to the challenges that are involved. This review can provide researchers with a reference for the current state of affairs, and may motivate them to develop new materials for hydrogen generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elddis完成签到,获得积分10
2秒前
科研通AI5应助ASZXDW采纳,获得10
2秒前
2秒前
方囧发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI5应助Candice采纳,获得10
4秒前
4秒前
4秒前
CHEN完成签到,获得积分20
4秒前
4秒前
4秒前
领导范儿应助彩霞采纳,获得10
5秒前
5秒前
香蕉觅云应助XXXXbb采纳,获得10
5秒前
小蘑菇应助笗一一采纳,获得10
6秒前
hhy发布了新的文献求助10
7秒前
8秒前
Elddis发布了新的文献求助10
8秒前
8秒前
踏山河完成签到,获得积分10
9秒前
9秒前
9秒前
sy发布了新的文献求助10
10秒前
nbl发布了新的文献求助10
10秒前
10秒前
11秒前
nicolight完成签到,获得积分20
12秒前
刘昕帛完成签到,获得积分10
12秒前
豆子发布了新的文献求助10
12秒前
12秒前
彭于晏应助liu采纳,获得10
13秒前
zhaof完成签到 ,获得积分10
13秒前
当当发布了新的文献求助10
14秒前
14秒前
15秒前
郝南烟发布了新的文献求助30
15秒前
ASZXDW发布了新的文献求助10
16秒前
iNk应助三泥采纳,获得10
16秒前
七七七完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 530
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3579406
求助须知:如何正确求助?哪些是违规求助? 3149344
关于积分的说明 9476879
捐赠科研通 2850607
什么是DOI,文献DOI怎么找? 1567271
邀请新用户注册赠送积分活动 734033
科研通“疑难数据库(出版商)”最低求助积分说明 720346