A Method for Long-Term Target Anti-Interference Tracking Combining Deep Learning and CKF for LARS Tracking and Capturing

计算机科学 人工智能 计算机视觉 职位(财务) 卡尔曼滤波器 跟踪系统 跟踪(教育) 期限(时间) 可视化 干扰(通信) 过程(计算) 水下 实时计算 地理 财务 操作系统 物理 频道(广播) 量子力学 计算机网络 经济 考古 教育学 心理学
作者
Tao Zou,Weilun Situ,Wenlin Yang,Weixiang Zeng,Yunting Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (3): 748-748 被引量:5
标识
DOI:10.3390/rs15030748
摘要

Autonomous underwater vehicles (AUV) recycling in an underwater environment is particularly challenging due to the continuous exploitation of marine resources. AUV recycling via visual technology is the primary method. However, the current visual technology is limited by harsh sea conditions and has problems, such as poor tracking and detection. To solve these problems, we propose a long-term target anti-interference tracking (LTAT) method, which integrates Siamese networks, You Only Look Once (YOLO) networks and online learning ideas. Meanwhile, we propose using the cubature Kalman filter (CKF) for optimization and prediction of the position. We constructed a launch and recovery system (LARS) tracking and capturing the AUV. The system consists of the following parts: First, images are acquired via binocular cameras. Next, the relative position between the AUV and the end of the LARS was estimated based on the pixel positions of the tracking AUV feature points and binocular camera data. Finally, using a discrete proportion integration differentiation (PID) method, the LARS is controlled to capture the moving AUV via a CKF-optimized position. To verify the feasibility of our proposed system, we used the robot operating system (ROS) platform and Gazebo software to simulate the system for experiments and visualization. The experiment demonstrates that in the tracking process when the AUV makes a sinusoidal motion with an amplitude of 0.2 m in the three-dimensional space and the relative distance between the AUV and LARS is no more than 1 m, the estimated position error of the AUV does not exceed 0.03 m. In the capturing process, the final capturing error is about 28 mm. Our results verify that our proposed system has high robustness and accuracy, providing the foundation for future AUV recycling research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxldsb完成签到,获得积分10
刚刚
刚刚
fbbggb发布了新的文献求助10
1秒前
1秒前
文艺的绝山完成签到,获得积分10
2秒前
金桔完成签到,获得积分10
3秒前
fujun0095发布了新的文献求助10
3秒前
boxi完成签到,获得积分10
4秒前
领导范儿应助hyhyhyhy采纳,获得10
4秒前
4秒前
EdinLiv发布了新的文献求助10
5秒前
踏雪完成签到,获得积分10
6秒前
6秒前
6秒前
laura发布了新的文献求助10
8秒前
欣喜的香彤完成签到,获得积分10
10秒前
LSM发布了新的文献求助10
10秒前
太叔凡儿完成签到,获得积分10
11秒前
14秒前
dajiejie完成签到 ,获得积分10
15秒前
momo完成签到,获得积分10
16秒前
有米饭没完成签到 ,获得积分10
18秒前
Nathan完成签到,获得积分10
18秒前
LSM完成签到,获得积分10
19秒前
19秒前
sunflower完成签到,获得积分10
20秒前
22秒前
22秒前
归海人英发布了新的文献求助10
22秒前
23秒前
mov完成签到,获得积分10
23秒前
完美世界应助英俊的文龙采纳,获得10
24秒前
25秒前
1011完成签到,获得积分10
26秒前
小马发布了新的文献求助10
26秒前
思源应助Ryan采纳,获得30
28秒前
28秒前
MinQi完成签到,获得积分10
29秒前
gluwater发布了新的文献求助10
31秒前
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140111
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797203
捐赠科研通 2447324
什么是DOI,文献DOI怎么找? 1301841
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194