A Method for Long-Term Target Anti-Interference Tracking Combining Deep Learning and CKF for LARS Tracking and Capturing

计算机科学 人工智能 计算机视觉 职位(财务) 卡尔曼滤波器 跟踪系统 跟踪(教育) 期限(时间) 可视化 干扰(通信) 过程(计算) 水下 实时计算 地理 财务 操作系统 物理 频道(广播) 量子力学 计算机网络 经济 考古 教育学 心理学
作者
Tao Zou,Weilun Situ,Wenlin Yang,Weixiang Zeng,Yunting Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 748-748 被引量:5
标识
DOI:10.3390/rs15030748
摘要

Autonomous underwater vehicles (AUV) recycling in an underwater environment is particularly challenging due to the continuous exploitation of marine resources. AUV recycling via visual technology is the primary method. However, the current visual technology is limited by harsh sea conditions and has problems, such as poor tracking and detection. To solve these problems, we propose a long-term target anti-interference tracking (LTAT) method, which integrates Siamese networks, You Only Look Once (YOLO) networks and online learning ideas. Meanwhile, we propose using the cubature Kalman filter (CKF) for optimization and prediction of the position. We constructed a launch and recovery system (LARS) tracking and capturing the AUV. The system consists of the following parts: First, images are acquired via binocular cameras. Next, the relative position between the AUV and the end of the LARS was estimated based on the pixel positions of the tracking AUV feature points and binocular camera data. Finally, using a discrete proportion integration differentiation (PID) method, the LARS is controlled to capture the moving AUV via a CKF-optimized position. To verify the feasibility of our proposed system, we used the robot operating system (ROS) platform and Gazebo software to simulate the system for experiments and visualization. The experiment demonstrates that in the tracking process when the AUV makes a sinusoidal motion with an amplitude of 0.2 m in the three-dimensional space and the relative distance between the AUV and LARS is no more than 1 m, the estimated position error of the AUV does not exceed 0.03 m. In the capturing process, the final capturing error is about 28 mm. Our results verify that our proposed system has high robustness and accuracy, providing the foundation for future AUV recycling research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助矮小的万声采纳,获得10
1秒前
小小k发布了新的文献求助80
1秒前
迟意发布了新的文献求助10
2秒前
3秒前
3秒前
共享精神应助文静采纳,获得10
3秒前
4秒前
Hh发布了新的文献求助10
4秒前
SciGPT应助愉快白亦采纳,获得10
4秒前
4秒前
Lin琳发布了新的文献求助10
5秒前
闪闪的屁股完成签到,获得积分10
6秒前
7秒前
8秒前
12345发布了新的文献求助10
9秒前
9秒前
KingYugene发布了新的文献求助10
10秒前
sigmund完成签到,获得积分20
11秒前
11秒前
乐乐应助遇疯儿采纳,获得10
12秒前
12秒前
13秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
13秒前
浮游应助红糖小糍粑采纳,获得10
13秒前
Criminology34应助红糖小糍粑采纳,获得10
13秒前
14秒前
要减肥的半山完成签到,获得积分10
14秒前
15秒前
Lin琳完成签到,获得积分20
16秒前
文静发布了新的文献求助10
16秒前
小小超发布了新的文献求助10
16秒前
艾米尼发布了新的文献求助10
16秒前
KingYugene完成签到,获得积分10
17秒前
慕青应助hahaagain采纳,获得10
17秒前
18秒前
小二郎应助无奈的鞋子采纳,获得10
18秒前
yuanyuan完成签到,获得积分10
19秒前
科研通AI6应助Hh采纳,获得10
19秒前
浮游应助鹤九采纳,获得10
19秒前
20秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978174
求助须知:如何正确求助?哪些是违规求助? 4231199
关于积分的说明 13178705
捐赠科研通 4021946
什么是DOI,文献DOI怎么找? 2200483
邀请新用户注册赠送积分活动 1212958
关于科研通互助平台的介绍 1129258