无定形固体
纳米团簇
纳米片
纳米技术
透射电子显微镜
化学
纳米材料
铜
化学工程
材料科学
结晶学
有机化学
工程类
作者
Xiangyuan Ouyang,Yongli Wu,Yanjing Gao,Lingyun Li,Le Li,Ting Liu,Xinxin Jing,Yue Fu,Jing Luo,Gang Xie,Sisi Jia,Mingqiang Li,Qian Li,Chunhai Fan,Xiaoguo Liu
摘要
Two-dimensional (2D) amorphous materials could outperform their crystalline counterparts toward various applications because they have more defects and reactive sites and thus could exhibit a unique surface chemical state and provide an advanced electron/ion transport path. Nevertheless, it is challenging to fabricate ultrathin and large-sized 2D amorphous metallic nanomaterials in a mild and controllable manner due to the strong metallic bonds between metal atoms. Here, we reported a simple yet fast (10 min) DNA nanosheet (DNS)-templated method to synthesize micron-scale amorphous copper nanosheets (CuNSs) with a thickness of 1.9 ± 0.4 nm in aqueous solution at room temperature. We demonstrated the amorphous feature of the DNS/CuNSs by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Interestingly, we found that they could transform to crystalline forms under continuous electron beam irradiation. Of note, the amorphous DNS/CuNSs exhibited much stronger photoemission (∼62-fold) and photostability than dsDNA-templated discrete Cu nanoclusters due to the elevation of both the conduction band (CB) and valence band (VB). Such ultrathin amorphous DNS/CuNSs hold great potential for practical applications in biosensing, nanodevices, and photodevices.
科研通智能强力驱动
Strongly Powered by AbleSci AI