材料科学
电介质
微波食品加热
核磁共振
衰减
磁畴
极化(电化学)
凝聚态物理
化学物理
磁场
光电子学
光学
磁化
计算机科学
量子力学
物理化学
电信
物理
化学
作者
Panbo Liu,Guozheng Zhang,Hanxiao Xu,Shuaici Cheng,Ying Huang,Bo Ouyang,Yuetong Qian,Ruixuan Zhang,Renchao Che
标识
DOI:10.1002/adfm.202211298
摘要
Abstract Dielectric polarization and magnetic resonance associated with intrinsic constituent and extrinsic structure are two kinds of fundamental attenuation mechanisms for microwave absorbers, but remain extremely challenging in revealing the composition‐morphology‐performance correlation. Herein, hierarchical MXene/metal‐organic framework derivatives with coherent boundaries and magnetic units below critical grain size are constructed to realize synergistic dielectric–magnetic enhancement by phase‐evolution engineering and dynamic magnetic resonance. Specifically, phase‐evolution induced inseparable interfaces, diverse incompatible phases, and defects/vacancies contribute to dielectric polarization, while closely distributed magnetic units simultaneously realize nanoscale multi‐domain coupling and long‐range magnetic interaction. As results, the hierarchical derivatives promise an exceptional reflection loss of −59.5 dB and an effective absorption bandwidth of 6.1 GHz. Both experimental results and theoretical calculations indicate that phase‐evolution engineering and dynamic magnetic resonance maximize the absorption capability and demonstrate a versatile methodology for manipulating microwave attenuation. More importantly, the proposed multi‐domain coupling and long‐range magnetic interaction theories innovatively offer dynamic magnetic resonance mechanism for magnetic loss within critical grain size.
科研通智能强力驱动
Strongly Powered by AbleSci AI