A Two-Stage Strategy for UAV-enabled Wireless Power Transfer in Unknown Environments

计算机科学 无线电源传输 聚类分析 能源消耗 最大化 无线 遗传算法 灵活性(工程) 实时计算 高效能源利用 能量(信号处理) 钥匙(锁) 功率(物理) 功率控制 能量最小化 人工智能 数学优化 机器学习 电信 工程类 物理 计算化学 电气工程 化学 统计 计算机安全 数学 量子力学
作者
Junling Shi,Peiyu Cong,Liang Zhao,Xingwei Wang,Shaohua Wan,Mohsen Guizani
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-15 被引量:25
标识
DOI:10.1109/tmc.2023.3240763
摘要

Due to the outstanding merits such as mobility, high maneuverability, and flexibility, Unmanned Aerial Vehicles (UAVs) are viable mobile power transmitters that can be rapidly deployed in geographically constrained regions. They are good candidates for supplying power to energy-limited Sensor Nodes (SNs) with Wireless Power Transfer (WPT) technology. In this paper, we investigate a UAV-enabled WPT system that transmits power to a set of SNs at unknown positions. A key challenge is how to efficiently gather the locations of SNs and design a power transfer scheme. We formulate a multi-objective optimization problem to jointly optimize these objectives: maximization of UAV's search efficiency, maximization of total harvested energy, minimization of UAV's flight energy consumption and maximization of UAV's energy utilization efficiency. To tackle these issues, we present a two-stage strategy that includes a UAV Motion Control (UMC) algorithm for obtaining the coordinates of SNs and a Dynamic Genetic Clustering (DGC) algorithm for power transfer via grouping SNs into clusters. First, the UMC algorithm enables the UAV to autonomously control its own motion and conduct target search missions. The objective is to make the energy-restricted UAV find as many SNs as feasible without any apriori knowledge of their information. Second, the DGC algorithm is used to optimize the energy consumption of the UAV by combining a genetic clustering algorithm with a dynamic clustering strategy to maximize the amount of energy harvested by SNs and the energy utilization efficiency of the UAV. Finally, experimental results show that the proposed algorithms outperform their counterparts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
芜湖起飞完成签到 ,获得积分10
刚刚
刚刚
陈丢丢发布了新的文献求助10
1秒前
4秒前
在学一会发布了新的文献求助10
6秒前
CX发布了新的文献求助10
6秒前
哼哼哈嘿发布了新的文献求助10
6秒前
7秒前
8秒前
海滨之鹅完成签到,获得积分10
9秒前
汉堡包应助韩晴采纳,获得10
10秒前
11秒前
所所应助小巧的傲松采纳,获得10
12秒前
13秒前
劲秉应助张思涵采纳,获得10
13秒前
ysl发布了新的文献求助10
13秒前
在学一会完成签到,获得积分10
14秒前
15秒前
16秒前
无可发布了新的文献求助10
16秒前
壮观的画笔完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
巫马白桃发布了新的文献求助10
20秒前
21秒前
xpp发布了新的文献求助10
21秒前
yommi完成签到,获得积分10
22秒前
陈荆洲关注了科研通微信公众号
22秒前
求是鸡求食完成签到,获得积分10
22秒前
Sweety柠檬酱完成签到,获得积分10
22秒前
今后应助此时此刻采纳,获得10
23秒前
一味愚发布了新的文献求助10
23秒前
24秒前
Uriuheh完成签到,获得积分10
25秒前
bearbiscuit发布了新的文献求助10
25秒前
Hello应助有趣的银采纳,获得10
25秒前
宗语雪完成签到,获得积分10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727963
求助须知:如何正确求助?哪些是违规求助? 3273011
关于积分的说明 9979560
捐赠科研通 2988384
什么是DOI,文献DOI怎么找? 1639597
邀请新用户注册赠送积分活动 778819
科研通“疑难数据库(出版商)”最低求助积分说明 747817