A cellular automaton traffic model by mechanical restriction and the slow-to-start rules in the framework of Kerner’s three-phase traffic theory

细胞自动机 流量(数学) 三相交通理论 微观交通流模型 流量(计算机网络) 计算机科学 车头时距 模拟 边界(拓扑) 统计物理学 机械 物理 算法 数学 实时计算 工程类 数学分析 基于Kerner三相理论的交通拥堵重构 交通生成模型 计算机安全 运输工程 交通拥挤
作者
Qi-Lang Li,Junxia Wang,Lin-Ling Ye,Rui Jiang,Bing–Hong Wang
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:34 (09) 被引量:2
标识
DOI:10.1142/s0129183123501206
摘要

Most of the conventional cellular automaton (CA) traffic flow models have two shortcomings: unlimited deceleration capabilities and incapability of reproducing the synchronized flow in the three-phase traffic flow theory. Based on an original deceleration CA model that emphasizes limited mechanical capabilities and human overreaction as the origin of congested traffic states, this paper proposes a new deceleration CA model where the slow-to-start rules are incorporated. For periodic boundary conditions, one also finds that the present model can reproduce well the three different phases of traffic flow (free flow, synchronized traffic flow, wide moving jam) as well as two first-order phase transitions (the transitions from free flow to synchronized flow and from synchronized flow to wide moving jam) among them. Compared to the original deceleration CA model, one notes that the phase transition from the synchronized flow to wide moving jam becomes distinguishable. Furthermore, the present model can reliably reproduce most empirical findings including synchronized flow with different slopes, the so-called pinch effect, and the time-headway distribution of free flow and so on. Importantly, the synchronized flow with different slopes is supported by spatiotemporal diagrams and the statistical distribution of velocity and so on. For open boundary conditions, the present model can reproduce the spatiotemporal diagrams of well-known five patterns including moving synchronized flow pattern, localized synchronized flow pattern, widening synchronized flow pattern, dissolving general pattern and general pattern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孔雨珍完成签到,获得积分10
1秒前
娇气的春天完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
大模型应助奔奔采纳,获得10
3秒前
4秒前
4秒前
Owen应助西哈哈采纳,获得10
4秒前
Jessie完成签到 ,获得积分10
4秒前
烟花应助孔雨珍采纳,获得10
5秒前
王小志发布了新的文献求助10
5秒前
科研通AI5应助SCI采纳,获得10
5秒前
net完成签到 ,获得积分10
5秒前
Sally完成签到,获得积分10
6秒前
飘逸蘑菇完成签到 ,获得积分10
6秒前
7秒前
小二郎应助tao采纳,获得10
7秒前
陈丫发布了新的文献求助10
7秒前
7秒前
7秒前
小二郎应助凉风有信9527采纳,获得10
8秒前
LEMON发布了新的文献求助20
9秒前
炜大的我完成签到,获得积分10
9秒前
haimianbaobao发布了新的文献求助10
9秒前
传奇3应助研友_nPoXoL采纳,获得10
9秒前
lpp完成签到,获得积分10
9秒前
9秒前
ww发布了新的文献求助10
9秒前
22发布了新的文献求助10
10秒前
zhui发布了新的文献求助10
10秒前
11秒前
Jenny应助哈哈哈哈采纳,获得10
12秒前
笨笨芯应助Miracle采纳,获得10
12秒前
研友_LJGpan完成签到,获得积分10
12秒前
xiaozhenA完成签到,获得积分10
12秒前
junzilan发布了新的文献求助10
12秒前
云澈发布了新的文献求助10
12秒前
Hello paper发布了新的文献求助20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794