电极
材料科学
阳极
涂层
化学工程
电解
电解水
膜电极组件
膜
制氢
催化作用
复合材料
分析化学(期刊)
化学
电解质
色谱法
生物化学
物理化学
工程类
作者
Zhenye Kang,Fan Zhang,Fan Zhang,Zhenyu Zhang,Chao Tian,Weina Wang,Jing Li,Yijun Shen,Xinlong Tian
出处
期刊:Materials
[MDPI AG]
日期:2022-10-16
卷期号:15 (20): 7209-7209
被引量:3
摘要
The electrode, as one of the most critical components in a proton exchange membrane water electrolysis (PEMWE) cell for hydrogen production, has a significant impact on cell performance. Electrodes that are fabricated via various techniques may exhibit different morphologies or properties, which might change the kinetics and resistances of the PEMWE. In this study, we have successfully fabricated several electrodes by different techniques, and the effects of electrode coating methods (ultrasonic spray, blade coating, and rod coating), hot press, and decal transfer processes are comprehensively investigated. The performance differences between various electrodes are due to kinetic or high frequency resistance changes, while the influences are not significant, with the biggest deviation of about 26 mV at 2.0 A cm-2. In addition, the effects of catalyst ink compositions, including ionomer to catalyst ratio (0.1 to 0.3), water to alcohol ratio (1:1 to 3:1), and catalyst weight percentage (10% to 30%), are also studied, and the electrodes' performance variations are less than 10 mV at 2.0 A cm-2. The results show that the PEMWE electrode has superior compatibility and redundancy, which demonstrates the high flexibility of the electrode and its applicability for large-scale manufacturing.
科研通智能强力驱动
Strongly Powered by AbleSci AI